Copied to
clipboard

G = C3xC12.47D4order 288 = 25·32

Direct product of C3 and C12.47D4

direct product, metabelian, supersoluble, monomial

Aliases: C3xC12.47D4, C12.87D12, C12.56(C3xD4), C4.12(C3xD12), (C2xDic3).C12, C6.50(D6:C4), (C2xC12).221D6, (C3xC12).158D4, C62.38(C2xC4), C22.5(S3xC12), (C6xDic3).2C4, (C6xDic6).5C2, (C2xDic6).6C6, C4.Dic3.3C6, (C6xC12).45C22, M4(2).2(C3xS3), (C3xM4(2)).8C6, C12.139(C3:D4), C32:5(C4.10D4), (C3xM4(2)).10S3, (C32xM4(2)).2C2, (C2xC4).2(S3xC6), (C2xC6).60(C4xS3), (C2xC6).3(C2xC12), C2.10(C3xD6:C4), C4.22(C3xC3:D4), C6.9(C3xC22:C4), (C2xC12).15(C2xC6), C3:1(C3xC4.10D4), (C3xC4.Dic3).7C2, (C3xC6).49(C22:C4), SmallGroup(288,258)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C3xC12.47D4
C1C3C6C2xC6C2xC12C6xC12C6xDic6 — C3xC12.47D4
C3C6C2xC6 — C3xC12.47D4
C1C6C2xC12C3xM4(2)

Generators and relations for C3xC12.47D4
 G = < a,b,c,d | a3=b12=1, c4=d2=b6, ab=ba, ac=ca, ad=da, cbc-1=dbd-1=b-1, dcd-1=b9c3 >

Subgroups: 186 in 86 conjugacy classes, 38 normal (34 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C6, C6, C8, C2xC4, C2xC4, Q8, C32, Dic3, C12, C12, C2xC6, C2xC6, M4(2), M4(2), C2xQ8, C3xC6, C3xC6, C3:C8, C24, Dic6, C2xDic3, C2xC12, C2xC12, C3xQ8, C4.10D4, C3xDic3, C3xC12, C62, C4.Dic3, C3xM4(2), C3xM4(2), C2xDic6, C6xQ8, C3xC3:C8, C3xC24, C3xDic6, C6xDic3, C6xC12, C12.47D4, C3xC4.10D4, C3xC4.Dic3, C32xM4(2), C6xDic6, C3xC12.47D4
Quotients: C1, C2, C3, C4, C22, S3, C6, C2xC4, D4, C12, D6, C2xC6, C22:C4, C3xS3, C4xS3, D12, C3:D4, C2xC12, C3xD4, C4.10D4, S3xC6, D6:C4, C3xC22:C4, S3xC12, C3xD12, C3xC3:D4, C12.47D4, C3xC4.10D4, C3xD6:C4, C3xC12.47D4

Smallest permutation representation of C3xC12.47D4
On 48 points
Generators in S48
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 17 21)(14 18 22)(15 19 23)(16 20 24)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 45 41)(38 46 42)(39 47 43)(40 48 44)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 40 10 43 7 46 4 37)(2 39 11 42 8 45 5 48)(3 38 12 41 9 44 6 47)(13 26 16 35 19 32 22 29)(14 25 17 34 20 31 23 28)(15 36 18 33 21 30 24 27)
(1 26 7 32)(2 25 8 31)(3 36 9 30)(4 35 10 29)(5 34 11 28)(6 33 12 27)(13 43 19 37)(14 42 20 48)(15 41 21 47)(16 40 22 46)(17 39 23 45)(18 38 24 44)

G:=sub<Sym(48)| (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,40,10,43,7,46,4,37)(2,39,11,42,8,45,5,48)(3,38,12,41,9,44,6,47)(13,26,16,35,19,32,22,29)(14,25,17,34,20,31,23,28)(15,36,18,33,21,30,24,27), (1,26,7,32)(2,25,8,31)(3,36,9,30)(4,35,10,29)(5,34,11,28)(6,33,12,27)(13,43,19,37)(14,42,20,48)(15,41,21,47)(16,40,22,46)(17,39,23,45)(18,38,24,44)>;

G:=Group( (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,40,10,43,7,46,4,37)(2,39,11,42,8,45,5,48)(3,38,12,41,9,44,6,47)(13,26,16,35,19,32,22,29)(14,25,17,34,20,31,23,28)(15,36,18,33,21,30,24,27), (1,26,7,32)(2,25,8,31)(3,36,9,30)(4,35,10,29)(5,34,11,28)(6,33,12,27)(13,43,19,37)(14,42,20,48)(15,41,21,47)(16,40,22,46)(17,39,23,45)(18,38,24,44) );

G=PermutationGroup([[(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,17,21),(14,18,22),(15,19,23),(16,20,24),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,45,41),(38,46,42),(39,47,43),(40,48,44)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,40,10,43,7,46,4,37),(2,39,11,42,8,45,5,48),(3,38,12,41,9,44,6,47),(13,26,16,35,19,32,22,29),(14,25,17,34,20,31,23,28),(15,36,18,33,21,30,24,27)], [(1,26,7,32),(2,25,8,31),(3,36,9,30),(4,35,10,29),(5,34,11,28),(6,33,12,27),(13,43,19,37),(14,42,20,48),(15,41,21,47),(16,40,22,46),(17,39,23,45),(18,38,24,44)]])

63 conjugacy classes

class 1 2A2B3A3B3C3D3E4A4B4C4D6A6B6C···6G6H6I6J8A8B8C8D12A···12J12K12L12M12N12O12P12Q24A···24P24Q24R24S24T
order122333334444666···6666888812···121212121212121224···2424242424
size11211222221212112···24444412122···2444121212124···412121212

63 irreducible representations

dim11111111112222222222224444
type++++++++--
imageC1C2C2C2C3C4C6C6C6C12S3D4D6C3xS3D12C3:D4C3xD4C4xS3S3xC6C3xD12C3xC3:D4S3xC12C4.10D4C12.47D4C3xC4.10D4C3xC12.47D4
kernelC3xC12.47D4C3xC4.Dic3C32xM4(2)C6xDic6C12.47D4C6xDic3C4.Dic3C3xM4(2)C2xDic6C2xDic3C3xM4(2)C3xC12C2xC12M4(2)C12C12C12C2xC6C2xC4C4C4C22C32C3C3C1
# reps11112422281212224224441224

Matrix representation of C3xC12.47D4 in GL4(F73) generated by

8000
0800
0080
0008
,
30170
0300
00490
00049
,
2745026
005246
4323460
7246210
,
720420
0001
66010
07200
G:=sub<GL(4,GF(73))| [8,0,0,0,0,8,0,0,0,0,8,0,0,0,0,8],[3,0,0,0,0,3,0,0,17,0,49,0,0,0,0,49],[27,0,43,72,45,0,23,46,0,52,46,21,26,46,0,0],[72,0,66,0,0,0,0,72,42,0,1,0,0,1,0,0] >;

C3xC12.47D4 in GAP, Magma, Sage, TeX

C_3\times C_{12}._{47}D_4
% in TeX

G:=Group("C3xC12.47D4");
// GroupNames label

G:=SmallGroup(288,258);
// by ID

G=gap.SmallGroup(288,258);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-3,336,365,92,1683,136,1271,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^12=1,c^4=d^2=b^6,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=b^9*c^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<