Extensions 1→N→G→Q→1 with N=C6 and Q=D24

Direct product G=N×Q with N=C6 and Q=D24
dρLabelID
C6×D2496C6xD24288,674

Semidirect products G=N:Q with N=C6 and Q=D24
extensionφ:Q→Aut NdρLabelID
C61D24 = C2×C325D8φ: D24/C24C2 ⊆ Aut C6144C6:1D24288,760
C62D24 = C2×C3⋊D24φ: D24/D12C2 ⊆ Aut C648C6:2D24288,472

Non-split extensions G=N.Q with N=C6 and Q=D24
extensionφ:Q→Aut NdρLabelID
C6.1D24 = D144φ: D24/C24C2 ⊆ Aut C61442+C6.1D24288,6
C6.2D24 = C144⋊C2φ: D24/C24C2 ⊆ Aut C61442C6.2D24288,7
C6.3D24 = Dic72φ: D24/C24C2 ⊆ Aut C62882-C6.3D24288,8
C6.4D24 = C721C4φ: D24/C24C2 ⊆ Aut C6288C6.4D24288,26
C6.5D24 = C2.D72φ: D24/C24C2 ⊆ Aut C6144C6.5D24288,28
C6.6D24 = C2×D72φ: D24/C24C2 ⊆ Aut C6144C6.6D24288,114
C6.7D24 = C325D16φ: D24/C24C2 ⊆ Aut C6144C6.7D24288,274
C6.8D24 = C6.D24φ: D24/C24C2 ⊆ Aut C6144C6.8D24288,275
C6.9D24 = C325Q32φ: D24/C24C2 ⊆ Aut C6288C6.9D24288,276
C6.10D24 = C241Dic3φ: D24/C24C2 ⊆ Aut C6288C6.10D24288,293
C6.11D24 = C62.84D4φ: D24/C24C2 ⊆ Aut C6144C6.11D24288,296
C6.12D24 = C3⋊D48φ: D24/D12C2 ⊆ Aut C6484+C6.12D24288,194
C6.13D24 = C323SD32φ: D24/D12C2 ⊆ Aut C6964-C6.13D24288,196
C6.14D24 = C24.49D6φ: D24/D12C2 ⊆ Aut C6484+C6.14D24288,197
C6.15D24 = C323Q32φ: D24/D12C2 ⊆ Aut C6964-C6.15D24288,199
C6.16D24 = C6.16D24φ: D24/D12C2 ⊆ Aut C696C6.16D24288,211
C6.17D24 = C6.17D24φ: D24/D12C2 ⊆ Aut C648C6.17D24288,212
C6.18D24 = C6.18D24φ: D24/D12C2 ⊆ Aut C696C6.18D24288,223
C6.19D24 = C3×D48central extension (φ=1)962C6.19D24288,233
C6.20D24 = C3×C48⋊C2central extension (φ=1)962C6.20D24288,234
C6.21D24 = C3×Dic24central extension (φ=1)962C6.21D24288,235
C6.22D24 = C3×C241C4central extension (φ=1)96C6.22D24288,252
C6.23D24 = C3×C2.D24central extension (φ=1)96C6.23D24288,255

׿
×
𝔽