Extensions 1→N→G→Q→1 with N=C3 and Q=D6⋊D4

Direct product G=N×Q with N=C3 and Q=D6⋊D4
dρLabelID
C3×D6⋊D448C3xD6:D4288,653

Semidirect products G=N:Q with N=C3 and Q=D6⋊D4
extensionφ:Q→Aut NdρLabelID
C31(D6⋊D4) = D65D12φ: D6⋊D4/D6⋊C4C2 ⊆ Aut C348C3:1(D6:D4)288,571
C32(D6⋊D4) = C6212D4φ: D6⋊D4/C3×C22⋊C4C2 ⊆ Aut C372C3:2(D6:D4)288,739
C33(D6⋊D4) = D64D12φ: D6⋊D4/C2×D12C2 ⊆ Aut C348C3:3(D6:D4)288,570
C34(D6⋊D4) = C628D4φ: D6⋊D4/C2×C3⋊D4C2 ⊆ Aut C324C3:4(D6:D4)288,629
C35(D6⋊D4) = C625D4φ: D6⋊D4/S3×C23C2 ⊆ Aut C348C3:5(D6:D4)288,625

Non-split extensions G=N.Q with N=C3 and Q=D6⋊D4
extensionφ:Q→Aut NdρLabelID
C3.(D6⋊D4) = C223D36φ: D6⋊D4/C3×C22⋊C4C2 ⊆ Aut C372C3.(D6:D4)288,92

׿
×
𝔽