metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D6:4D4, C22:3D12, C23.20D6, (C2xC6):1D4, (C2xC4):1D6, D6:C4:4C2, C3:1C22wrC2, C6.5(C2xD4), C2.7(S3xD4), (C2xD12):2C2, C22:C4:2S3, C2.7(C2xD12), (S3xC23):1C2, (C2xC12):1C22, (C2xC6).23C23, (C22xS3):1C22, (C2xDic3):1C22, (C22xC6).12C22, C22.41(C22xS3), (C2xC3:D4):1C2, (C3xC22:C4):3C2, SmallGroup(96,89)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D6:D4
G = < a,b,c,d | a6=b2=c4=d2=1, bab=dad=a-1, ac=ca, cbc-1=a3b, dbd=ab, dcd=c-1 >
Subgroups: 378 in 130 conjugacy classes, 37 normal (15 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C6, C2xC4, C2xC4, D4, C23, C23, Dic3, C12, D6, D6, C2xC6, C2xC6, C2xC6, C22:C4, C22:C4, C2xD4, C24, D12, C2xDic3, C3:D4, C2xC12, C22xS3, C22xS3, C22xS3, C22xC6, C22wrC2, D6:C4, C3xC22:C4, C2xD12, C2xC3:D4, S3xC23, D6:D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, D12, C22xS3, C22wrC2, C2xD12, S3xD4, D6:D4
Character table of D6:D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 3 | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 6E | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 6 | 6 | 6 | 6 | 12 | 2 | 4 | 4 | 12 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | -2 | -2 | 0 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ11 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | -2 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ15 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ16 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ17 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | -2 | 2 | 0 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ18 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | 1 | -√3 | √3 | √3 | -√3 | orthogonal lifted from D12 |
ρ20 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 1 | -1 | 1 | 1 | -1 | -√3 | √3 | -√3 | √3 | orthogonal lifted from D12 |
ρ21 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 1 | -1 | 1 | 1 | -1 | √3 | -√3 | √3 | -√3 | orthogonal lifted from D12 |
ρ22 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | 1 | √3 | -√3 | -√3 | √3 | orthogonal lifted from D12 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3xD4 |
ρ24 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3xD4 |
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 14)(2 13)(3 18)(4 17)(5 16)(6 15)(7 20)(8 19)(9 24)(10 23)(11 22)(12 21)
(1 19 15 12)(2 20 16 7)(3 21 17 8)(4 22 18 9)(5 23 13 10)(6 24 14 11)
(1 22)(2 21)(3 20)(4 19)(5 24)(6 23)(7 17)(8 16)(9 15)(10 14)(11 13)(12 18)
G:=sub<Sym(24)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,14)(2,13)(3,18)(4,17)(5,16)(6,15)(7,20)(8,19)(9,24)(10,23)(11,22)(12,21), (1,19,15,12)(2,20,16,7)(3,21,17,8)(4,22,18,9)(5,23,13,10)(6,24,14,11), (1,22)(2,21)(3,20)(4,19)(5,24)(6,23)(7,17)(8,16)(9,15)(10,14)(11,13)(12,18)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,14)(2,13)(3,18)(4,17)(5,16)(6,15)(7,20)(8,19)(9,24)(10,23)(11,22)(12,21), (1,19,15,12)(2,20,16,7)(3,21,17,8)(4,22,18,9)(5,23,13,10)(6,24,14,11), (1,22)(2,21)(3,20)(4,19)(5,24)(6,23)(7,17)(8,16)(9,15)(10,14)(11,13)(12,18) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,14),(2,13),(3,18),(4,17),(5,16),(6,15),(7,20),(8,19),(9,24),(10,23),(11,22),(12,21)], [(1,19,15,12),(2,20,16,7),(3,21,17,8),(4,22,18,9),(5,23,13,10),(6,24,14,11)], [(1,22),(2,21),(3,20),(4,19),(5,24),(6,23),(7,17),(8,16),(9,15),(10,14),(11,13),(12,18)]])
G:=TransitiveGroup(24,144);
D6:D4 is a maximal subgroup of
C23:D12 C24.38D6 C23:4D12 C42:10D6 C42:11D6 C42:12D6 C42:14D6 D4xD12 D4:5D12 C42:19D6 S3xC22wrC2 C24:8D6 C24.45D6 C6.372+ 1+4 C6.382+ 1+4 D12:19D4 C6.482+ 1+4 C4:C4:26D6 D12:21D4 C6.532+ 1+4 C6.562+ 1+4 C6.1202+ 1+4 C6.1212+ 1+4 C4:C4:28D6 C6.612+ 1+4 C6.682+ 1+4 C42:20D6 D12:10D4 C42:22D6 C42:24D6 C42:25D6 C42:26D6 C42:27D6 C22:3D36 D6:4D12 D6:5D12 C62:5D4 C62:8D4 C62:12D4 A4:D12 D30:4D4 D30:5D4 (C2xC10):11D12 D30:19D4 D30:16D4
D6:D4 is a maximal quotient of
(C2xC4):Dic6 (C2xC4):9D12 D6:C4:C4 (C2xC12):5D4 C6.C22wrC2 (C22xS3):Q8 D12.31D4 D12:13D4 D12.32D4 D12:14D4 Dic6:14D4 Dic6.32D4 C23:D12 C23.5D12 M4(2):D6 D12:1D4 D12.4D4 D12.5D4 D4:D12 D6:5SD16 D4:3D12 D4.D12 Q8:3D12 Q8.11D12 D6:Q16 Q8:4D12 Q8:5D12 C42:5D6 Q8.14D12 D4.10D12 C24.58D6 C24.59D6 C24.60D6 C23:3D12 C24.27D6 C22:3D36 D6:4D12 D6:5D12 C62:5D4 C62:8D4 C62:12D4 D30:4D4 D30:5D4 (C2xC10):11D12 D30:19D4 D30:16D4
Matrix representation of D6:D4 ►in GL6(Z)
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 1 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | -1 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
0 | 1 | 0 | 0 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,Integers())| [-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,-1,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,-1,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[0,-1,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,1,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
D6:D4 in GAP, Magma, Sage, TeX
D_6\rtimes D_4
% in TeX
G:=Group("D6:D4");
// GroupNames label
G:=SmallGroup(96,89);
// by ID
G=gap.SmallGroup(96,89);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,218,188,50,2309]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^2=c^4=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^3*b,d*b*d=a*b,d*c*d=c^-1>;
// generators/relations
Export