metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D6⋊4D4, C22⋊3D12, C23.20D6, (C2×C6)⋊1D4, (C2×C4)⋊1D6, D6⋊C4⋊4C2, C3⋊1C22≀C2, C6.5(C2×D4), C2.7(S3×D4), (C2×D12)⋊2C2, C22⋊C4⋊2S3, C2.7(C2×D12), (S3×C23)⋊1C2, (C2×C12)⋊1C22, (C2×C6).23C23, (C22×S3)⋊1C22, (C2×Dic3)⋊1C22, (C22×C6).12C22, C22.41(C22×S3), (C2×C3⋊D4)⋊1C2, (C3×C22⋊C4)⋊3C2, SmallGroup(96,89)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D6⋊D4
G = < a,b,c,d | a6=b2=c4=d2=1, bab=dad=a-1, ac=ca, cbc-1=a3b, dbd=ab, dcd=c-1 >
Subgroups: 378 in 130 conjugacy classes, 37 normal (15 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, D4, C23, C23, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C2×D4, C24, D12, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×S3, C22×S3, C22×C6, C22≀C2, D6⋊C4, C3×C22⋊C4, C2×D12, C2×C3⋊D4, S3×C23, D6⋊D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D12, C22×S3, C22≀C2, C2×D12, S3×D4, D6⋊D4
Character table of D6⋊D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 3 | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 6E | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 6 | 6 | 6 | 6 | 12 | 2 | 4 | 4 | 12 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | -2 | -2 | 0 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ11 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | -2 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ15 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ16 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ17 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | -2 | 2 | 0 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ18 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | 1 | -√3 | √3 | √3 | -√3 | orthogonal lifted from D12 |
ρ20 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 1 | -1 | 1 | 1 | -1 | -√3 | √3 | -√3 | √3 | orthogonal lifted from D12 |
ρ21 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 1 | -1 | 1 | 1 | -1 | √3 | -√3 | √3 | -√3 | orthogonal lifted from D12 |
ρ22 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | 1 | √3 | -√3 | -√3 | √3 | orthogonal lifted from D12 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ24 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 14)(2 13)(3 18)(4 17)(5 16)(6 15)(7 20)(8 19)(9 24)(10 23)(11 22)(12 21)
(1 19 15 12)(2 20 16 7)(3 21 17 8)(4 22 18 9)(5 23 13 10)(6 24 14 11)
(1 22)(2 21)(3 20)(4 19)(5 24)(6 23)(7 17)(8 16)(9 15)(10 14)(11 13)(12 18)
G:=sub<Sym(24)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,14)(2,13)(3,18)(4,17)(5,16)(6,15)(7,20)(8,19)(9,24)(10,23)(11,22)(12,21), (1,19,15,12)(2,20,16,7)(3,21,17,8)(4,22,18,9)(5,23,13,10)(6,24,14,11), (1,22)(2,21)(3,20)(4,19)(5,24)(6,23)(7,17)(8,16)(9,15)(10,14)(11,13)(12,18)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,14)(2,13)(3,18)(4,17)(5,16)(6,15)(7,20)(8,19)(9,24)(10,23)(11,22)(12,21), (1,19,15,12)(2,20,16,7)(3,21,17,8)(4,22,18,9)(5,23,13,10)(6,24,14,11), (1,22)(2,21)(3,20)(4,19)(5,24)(6,23)(7,17)(8,16)(9,15)(10,14)(11,13)(12,18) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,14),(2,13),(3,18),(4,17),(5,16),(6,15),(7,20),(8,19),(9,24),(10,23),(11,22),(12,21)], [(1,19,15,12),(2,20,16,7),(3,21,17,8),(4,22,18,9),(5,23,13,10),(6,24,14,11)], [(1,22),(2,21),(3,20),(4,19),(5,24),(6,23),(7,17),(8,16),(9,15),(10,14),(11,13),(12,18)]])
G:=TransitiveGroup(24,144);
D6⋊D4 is a maximal subgroup of
C23⋊D12 C24.38D6 C23⋊4D12 C42⋊10D6 C42⋊11D6 C42⋊12D6 C42⋊14D6 D4×D12 D4⋊5D12 C42⋊19D6 S3×C22≀C2 C24⋊8D6 C24.45D6 C6.372+ 1+4 C6.382+ 1+4 D12⋊19D4 C6.482+ 1+4 C4⋊C4⋊26D6 D12⋊21D4 C6.532+ 1+4 C6.562+ 1+4 C6.1202+ 1+4 C6.1212+ 1+4 C4⋊C4⋊28D6 C6.612+ 1+4 C6.682+ 1+4 C42⋊20D6 D12⋊10D4 C42⋊22D6 C42⋊24D6 C42⋊25D6 C42⋊26D6 C42⋊27D6 C22⋊3D36 D6⋊4D12 D6⋊5D12 C62⋊5D4 C62⋊8D4 C62⋊12D4 A4⋊D12 D30⋊4D4 D30⋊5D4 (C2×C10)⋊11D12 D30⋊19D4 D30⋊16D4
D6⋊D4 is a maximal quotient of
(C2×C4)⋊Dic6 (C2×C4)⋊9D12 D6⋊C4⋊C4 (C2×C12)⋊5D4 C6.C22≀C2 (C22×S3)⋊Q8 D12.31D4 D12⋊13D4 D12.32D4 D12⋊14D4 Dic6⋊14D4 Dic6.32D4 C23⋊D12 C23.5D12 M4(2)⋊D6 D12⋊1D4 D12.4D4 D12.5D4 D4⋊D12 D6⋊5SD16 D4⋊3D12 D4.D12 Q8⋊3D12 Q8.11D12 D6⋊Q16 Q8⋊4D12 Q8⋊5D12 C42⋊5D6 Q8.14D12 D4.10D12 C24.58D6 C24.59D6 C24.60D6 C23⋊3D12 C24.27D6 C22⋊3D36 D6⋊4D12 D6⋊5D12 C62⋊5D4 C62⋊8D4 C62⋊12D4 D30⋊4D4 D30⋊5D4 (C2×C10)⋊11D12 D30⋊19D4 D30⋊16D4
Matrix representation of D6⋊D4 ►in GL6(ℤ)
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 1 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | -1 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
0 | 1 | 0 | 0 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,Integers())| [-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,-1,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,-1,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[0,-1,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,1,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
D6⋊D4 in GAP, Magma, Sage, TeX
D_6\rtimes D_4
% in TeX
G:=Group("D6:D4");
// GroupNames label
G:=SmallGroup(96,89);
// by ID
G=gap.SmallGroup(96,89);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,218,188,50,2309]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^2=c^4=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^3*b,d*b*d=a*b,d*c*d=c^-1>;
// generators/relations
Export