Copied to
clipboard

G = A4wrC2order 288 = 25·32

Wreath product of A4 by C2

non-abelian, soluble, monomial

Aliases: A4wrC2, A42:1C2, C22:A4:C6, C22:S4:C3, C22:A4:1S3, C24:2(C3xS3), SmallGroup(288,1025)

Series: Derived Chief Lower central Upper central

C1C24C22:A4 — A4wrC2
C1C24C22:A4A42 — A4wrC2
C22:A4 — A4wrC2
C1

Generators and relations for A4wrC2
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e3=f6=1, eae-1=ab=ba, ac=ca, faf-1=ad=da, fdf-1=bc=cb, bd=db, ebe-1=a, fbf-1=abc, ece-1=cd=dc, fcf-1=abd, ede-1=c, fef-1=e-1 >

Subgroups: 442 in 46 conjugacy classes, 7 normal (all characteristic)
Quotients: C1, C2, C3, S3, C6, C3xS3, A4wrC2
6C2
9C2
12C2
8C3
16C3
16C3
2C22
3C22
3C22
9C22
18C22
18C22
18C4
16S3
24C6
48C6
16C32
3C23
6C23
9C2xC4
9C23
18D4
18D4
2A4
8C2xC6
8A4
8A4
12A4
12A4
16C3xS3
9C2xD4
9C22:C4
6C2xA4
12C2xA4
12S4
8C3xA4
3C22wrC2
2C22xA4
3C24:C6

Character table of A4wrC2

 class 12A2B2C3A3B3C3D3E46A6B6C6D
 size 16912881616323624244848
ρ111111111111111    trivial
ρ2111-111111-111-1-1    linear of order 2
ρ3111-1ζ32ζ3ζ32ζ31-1ζ3ζ32ζ65ζ6    linear of order 6
ρ41111ζ32ζ3ζ32ζ311ζ3ζ32ζ3ζ32    linear of order 3
ρ5111-1ζ3ζ32ζ3ζ321-1ζ32ζ3ζ6ζ65    linear of order 6
ρ61111ζ3ζ32ζ3ζ3211ζ32ζ3ζ32ζ3    linear of order 3
ρ72220-1-122-10-1-100    orthogonal lifted from S3
ρ82220ζ65ζ6-1+-3-1--3-10ζ6ζ6500    complex lifted from C3xS3
ρ92220ζ6ζ65-1--3-1+-3-10ζ65ζ600    complex lifted from C3xS3
ρ1062-20330000-1-100    orthogonal faithful
ρ1162-20-3-3-3/2-3+3-3/20000ζ65ζ600    complex faithful
ρ1262-20-3+3-3/2-3-3-3/20000ζ6ζ6500    complex faithful
ρ139-31300000-10000    orthogonal faithful
ρ149-31-30000010000    orthogonal faithful

Permutation representations of A4wrC2
On 8 points - transitive group 8T42
Generators in S8
(1 4)(2 3)(5 7)(6 8)
(1 8)(2 5)(3 7)(4 6)
(1 8)(4 6)
(1 6)(4 8)
(3 5 7)(4 8 6)
(1 2)(3 4 5 6 7 8)

G:=sub<Sym(8)| (1,4)(2,3)(5,7)(6,8), (1,8)(2,5)(3,7)(4,6), (1,8)(4,6), (1,6)(4,8), (3,5,7)(4,8,6), (1,2)(3,4,5,6,7,8)>;

G:=Group( (1,4)(2,3)(5,7)(6,8), (1,8)(2,5)(3,7)(4,6), (1,8)(4,6), (1,6)(4,8), (3,5,7)(4,8,6), (1,2)(3,4,5,6,7,8) );

G=PermutationGroup([[(1,4),(2,3),(5,7),(6,8)], [(1,8),(2,5),(3,7),(4,6)], [(1,8),(4,6)], [(1,6),(4,8)], [(3,5,7),(4,8,6)], [(1,2),(3,4,5,6,7,8)]])

G:=TransitiveGroup(8,42);

On 12 points - transitive group 12T126
Generators in S12
(1 10)(2 11)(3 12)(6 9)
(1 10)(2 11)(4 7)(5 8)
(1 10)(5 8)
(3 12)(5 8)
(1 5 3)(2 4 6)(7 9 11)(8 12 10)
(1 2 3 4 5 6)(7 8 9 10 11 12)

G:=sub<Sym(12)| (1,10)(2,11)(3,12)(6,9), (1,10)(2,11)(4,7)(5,8), (1,10)(5,8), (3,12)(5,8), (1,5,3)(2,4,6)(7,9,11)(8,12,10), (1,2,3,4,5,6)(7,8,9,10,11,12)>;

G:=Group( (1,10)(2,11)(3,12)(6,9), (1,10)(2,11)(4,7)(5,8), (1,10)(5,8), (3,12)(5,8), (1,5,3)(2,4,6)(7,9,11)(8,12,10), (1,2,3,4,5,6)(7,8,9,10,11,12) );

G=PermutationGroup([[(1,10),(2,11),(3,12),(6,9)], [(1,10),(2,11),(4,7),(5,8)], [(1,10),(5,8)], [(3,12),(5,8)], [(1,5,3),(2,4,6),(7,9,11),(8,12,10)], [(1,2,3,4,5,6),(7,8,9,10,11,12)]])

G:=TransitiveGroup(12,126);

On 12 points - transitive group 12T128
Generators in S12
(1 4)(2 7)(5 6)(9 11)
(2 7)(3 10)(8 12)(9 11)
(1 4)(2 9)(3 8)(5 6)(7 11)(10 12)
(1 5)(2 7)(3 12)(4 6)(8 10)(9 11)
(1 2 3)(4 7 10)(5 11 8)(6 9 12)
(2 3)(4 5 6)(7 8 9 10 11 12)

G:=sub<Sym(12)| (1,4)(2,7)(5,6)(9,11), (2,7)(3,10)(8,12)(9,11), (1,4)(2,9)(3,8)(5,6)(7,11)(10,12), (1,5)(2,7)(3,12)(4,6)(8,10)(9,11), (1,2,3)(4,7,10)(5,11,8)(6,9,12), (2,3)(4,5,6)(7,8,9,10,11,12)>;

G:=Group( (1,4)(2,7)(5,6)(9,11), (2,7)(3,10)(8,12)(9,11), (1,4)(2,9)(3,8)(5,6)(7,11)(10,12), (1,5)(2,7)(3,12)(4,6)(8,10)(9,11), (1,2,3)(4,7,10)(5,11,8)(6,9,12), (2,3)(4,5,6)(7,8,9,10,11,12) );

G=PermutationGroup([[(1,4),(2,7),(5,6),(9,11)], [(2,7),(3,10),(8,12),(9,11)], [(1,4),(2,9),(3,8),(5,6),(7,11),(10,12)], [(1,5),(2,7),(3,12),(4,6),(8,10),(9,11)], [(1,2,3),(4,7,10),(5,11,8),(6,9,12)], [(2,3),(4,5,6),(7,8,9,10,11,12)]])

G:=TransitiveGroup(12,128);

On 12 points - transitive group 12T129
Generators in S12
(1 7)(3 9)(5 12)(6 10)
(1 6)(3 5)(7 10)(9 12)
(1 10)(2 4)(3 9)(5 12)(6 7)(8 11)
(1 7)(2 8)(3 5)(4 11)(6 10)(9 12)
(4 8 11)(5 12 9)(6 10 7)
(1 2 3)(4 5 6)(7 8 9 10 11 12)

G:=sub<Sym(12)| (1,7)(3,9)(5,12)(6,10), (1,6)(3,5)(7,10)(9,12), (1,10)(2,4)(3,9)(5,12)(6,7)(8,11), (1,7)(2,8)(3,5)(4,11)(6,10)(9,12), (4,8,11)(5,12,9)(6,10,7), (1,2,3)(4,5,6)(7,8,9,10,11,12)>;

G:=Group( (1,7)(3,9)(5,12)(6,10), (1,6)(3,5)(7,10)(9,12), (1,10)(2,4)(3,9)(5,12)(6,7)(8,11), (1,7)(2,8)(3,5)(4,11)(6,10)(9,12), (4,8,11)(5,12,9)(6,10,7), (1,2,3)(4,5,6)(7,8,9,10,11,12) );

G=PermutationGroup([[(1,7),(3,9),(5,12),(6,10)], [(1,6),(3,5),(7,10),(9,12)], [(1,10),(2,4),(3,9),(5,12),(6,7),(8,11)], [(1,7),(2,8),(3,5),(4,11),(6,10),(9,12)], [(4,8,11),(5,12,9),(6,10,7)], [(1,2,3),(4,5,6),(7,8,9,10,11,12)]])

G:=TransitiveGroup(12,129);

On 16 points: primitive - transitive group 16T708
Generators in S16
(1 9)(2 6)(3 14)(4 11)(5 7)(8 12)(10 13)(15 16)
(1 2)(3 4)(5 16)(6 9)(7 15)(8 13)(10 12)(11 14)
(1 14)(2 11)(3 9)(4 6)(5 10)(7 13)(8 15)(12 16)
(1 12)(2 10)(3 15)(4 7)(5 11)(6 13)(8 9)(14 16)
(2 6 9)(3 10 7)(4 8 5)(11 13 15)(12 16 14)
(2 3 4)(5 6 7 8 9 10)(11 12 13 14 15 16)

G:=sub<Sym(16)| (1,9)(2,6)(3,14)(4,11)(5,7)(8,12)(10,13)(15,16), (1,2)(3,4)(5,16)(6,9)(7,15)(8,13)(10,12)(11,14), (1,14)(2,11)(3,9)(4,6)(5,10)(7,13)(8,15)(12,16), (1,12)(2,10)(3,15)(4,7)(5,11)(6,13)(8,9)(14,16), (2,6,9)(3,10,7)(4,8,5)(11,13,15)(12,16,14), (2,3,4)(5,6,7,8,9,10)(11,12,13,14,15,16)>;

G:=Group( (1,9)(2,6)(3,14)(4,11)(5,7)(8,12)(10,13)(15,16), (1,2)(3,4)(5,16)(6,9)(7,15)(8,13)(10,12)(11,14), (1,14)(2,11)(3,9)(4,6)(5,10)(7,13)(8,15)(12,16), (1,12)(2,10)(3,15)(4,7)(5,11)(6,13)(8,9)(14,16), (2,6,9)(3,10,7)(4,8,5)(11,13,15)(12,16,14), (2,3,4)(5,6,7,8,9,10)(11,12,13,14,15,16) );

G=PermutationGroup([[(1,9),(2,6),(3,14),(4,11),(5,7),(8,12),(10,13),(15,16)], [(1,2),(3,4),(5,16),(6,9),(7,15),(8,13),(10,12),(11,14)], [(1,14),(2,11),(3,9),(4,6),(5,10),(7,13),(8,15),(12,16)], [(1,12),(2,10),(3,15),(4,7),(5,11),(6,13),(8,9),(14,16)], [(2,6,9),(3,10,7),(4,8,5),(11,13,15),(12,16,14)], [(2,3,4),(5,6,7,8,9,10),(11,12,13,14,15,16)]])

G:=TransitiveGroup(16,708);

On 18 points - transitive group 18T112
Generators in S18
(1 4)(2 5)(10 16)(12 18)
(7 13)(9 15)(10 16)(12 18)
(1 4)(2 5)(7 13)(8 14)(11 17)(12 18)
(2 5)(3 6)(9 15)(10 16)(11 17)(12 18)
(1 18 9)(2 10 13)(3 14 11)(4 12 15)(5 16 7)(6 8 17)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)

G:=sub<Sym(18)| (1,4)(2,5)(10,16)(12,18), (7,13)(9,15)(10,16)(12,18), (1,4)(2,5)(7,13)(8,14)(11,17)(12,18), (2,5)(3,6)(9,15)(10,16)(11,17)(12,18), (1,18,9)(2,10,13)(3,14,11)(4,12,15)(5,16,7)(6,8,17), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)>;

G:=Group( (1,4)(2,5)(10,16)(12,18), (7,13)(9,15)(10,16)(12,18), (1,4)(2,5)(7,13)(8,14)(11,17)(12,18), (2,5)(3,6)(9,15)(10,16)(11,17)(12,18), (1,18,9)(2,10,13)(3,14,11)(4,12,15)(5,16,7)(6,8,17), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18) );

G=PermutationGroup([[(1,4),(2,5),(10,16),(12,18)], [(7,13),(9,15),(10,16),(12,18)], [(1,4),(2,5),(7,13),(8,14),(11,17),(12,18)], [(2,5),(3,6),(9,15),(10,16),(11,17),(12,18)], [(1,18,9),(2,10,13),(3,14,11),(4,12,15),(5,16,7),(6,8,17)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18)]])

G:=TransitiveGroup(18,112);

On 18 points - transitive group 18T113
Generators in S18
(1 5)(2 6)(7 15)(9 17)
(7 15)(9 17)(10 18)(12 14)
(1 5)(2 6)(8 16)(9 17)(10 18)(11 13)
(2 6)(3 4)(7 15)(8 16)(9 17)(12 14)
(1 17 14)(2 15 18)(3 13 16)(4 11 8)(5 9 12)(6 7 10)
(1 2 3)(4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)

G:=sub<Sym(18)| (1,5)(2,6)(7,15)(9,17), (7,15)(9,17)(10,18)(12,14), (1,5)(2,6)(8,16)(9,17)(10,18)(11,13), (2,6)(3,4)(7,15)(8,16)(9,17)(12,14), (1,17,14)(2,15,18)(3,13,16)(4,11,8)(5,9,12)(6,7,10), (1,2,3)(4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)>;

G:=Group( (1,5)(2,6)(7,15)(9,17), (7,15)(9,17)(10,18)(12,14), (1,5)(2,6)(8,16)(9,17)(10,18)(11,13), (2,6)(3,4)(7,15)(8,16)(9,17)(12,14), (1,17,14)(2,15,18)(3,13,16)(4,11,8)(5,9,12)(6,7,10), (1,2,3)(4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18) );

G=PermutationGroup([[(1,5),(2,6),(7,15),(9,17)], [(7,15),(9,17),(10,18),(12,14)], [(1,5),(2,6),(8,16),(9,17),(10,18),(11,13)], [(2,6),(3,4),(7,15),(8,16),(9,17),(12,14)], [(1,17,14),(2,15,18),(3,13,16),(4,11,8),(5,9,12),(6,7,10)], [(1,2,3),(4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18)]])

G:=TransitiveGroup(18,113);

On 24 points - transitive group 24T692
Generators in S24
(1 14)(2 21)(3 22)(4 9)(5 10)(6 13)(7 15)(8 16)(11 19)(12 20)(17 23)(18 24)
(1 20)(2 15)(3 8)(4 23)(5 18)(6 11)(7 21)(9 17)(10 24)(12 14)(13 19)(16 22)
(1 20)(3 8)(5 18)(10 24)(12 14)(16 22)
(1 12)(3 16)(5 24)(8 22)(10 18)(14 20)
(1 5 3)(2 4 6)(7 9 11)(8 12 10)(13 15 17)(14 18 16)(19 21 23)(20 24 22)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)

G:=sub<Sym(24)| (1,14)(2,21)(3,22)(4,9)(5,10)(6,13)(7,15)(8,16)(11,19)(12,20)(17,23)(18,24), (1,20)(2,15)(3,8)(4,23)(5,18)(6,11)(7,21)(9,17)(10,24)(12,14)(13,19)(16,22), (1,20)(3,8)(5,18)(10,24)(12,14)(16,22), (1,12)(3,16)(5,24)(8,22)(10,18)(14,20), (1,5,3)(2,4,6)(7,9,11)(8,12,10)(13,15,17)(14,18,16)(19,21,23)(20,24,22), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)>;

G:=Group( (1,14)(2,21)(3,22)(4,9)(5,10)(6,13)(7,15)(8,16)(11,19)(12,20)(17,23)(18,24), (1,20)(2,15)(3,8)(4,23)(5,18)(6,11)(7,21)(9,17)(10,24)(12,14)(13,19)(16,22), (1,20)(3,8)(5,18)(10,24)(12,14)(16,22), (1,12)(3,16)(5,24)(8,22)(10,18)(14,20), (1,5,3)(2,4,6)(7,9,11)(8,12,10)(13,15,17)(14,18,16)(19,21,23)(20,24,22), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24) );

G=PermutationGroup([[(1,14),(2,21),(3,22),(4,9),(5,10),(6,13),(7,15),(8,16),(11,19),(12,20),(17,23),(18,24)], [(1,20),(2,15),(3,8),(4,23),(5,18),(6,11),(7,21),(9,17),(10,24),(12,14),(13,19),(16,22)], [(1,20),(3,8),(5,18),(10,24),(12,14),(16,22)], [(1,12),(3,16),(5,24),(8,22),(10,18),(14,20)], [(1,5,3),(2,4,6),(7,9,11),(8,12,10),(13,15,17),(14,18,16),(19,21,23),(20,24,22)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)]])

G:=TransitiveGroup(24,692);

On 24 points - transitive group 24T694
Generators in S24
(1 18)(2 15)(3 21)(5 9)(7 11)(13 17)(14 16)(19 23)
(3 21)(4 24)(5 9)(6 12)(7 11)(8 10)(19 23)(20 22)
(1 18)(2 15)(3 23)(4 22)(5 11)(6 10)(7 9)(8 12)(13 17)(14 16)(19 21)(20 24)
(1 16)(2 13)(3 21)(4 20)(5 9)(6 8)(7 11)(10 12)(14 18)(15 17)(19 23)(22 24)
(1 5 4)(2 3 6)(7 22 16)(8 17 23)(9 24 18)(10 13 19)(11 20 14)(12 15 21)
(1 2)(3 4)(5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)

G:=sub<Sym(24)| (1,18)(2,15)(3,21)(5,9)(7,11)(13,17)(14,16)(19,23), (3,21)(4,24)(5,9)(6,12)(7,11)(8,10)(19,23)(20,22), (1,18)(2,15)(3,23)(4,22)(5,11)(6,10)(7,9)(8,12)(13,17)(14,16)(19,21)(20,24), (1,16)(2,13)(3,21)(4,20)(5,9)(6,8)(7,11)(10,12)(14,18)(15,17)(19,23)(22,24), (1,5,4)(2,3,6)(7,22,16)(8,17,23)(9,24,18)(10,13,19)(11,20,14)(12,15,21), (1,2)(3,4)(5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)>;

G:=Group( (1,18)(2,15)(3,21)(5,9)(7,11)(13,17)(14,16)(19,23), (3,21)(4,24)(5,9)(6,12)(7,11)(8,10)(19,23)(20,22), (1,18)(2,15)(3,23)(4,22)(5,11)(6,10)(7,9)(8,12)(13,17)(14,16)(19,21)(20,24), (1,16)(2,13)(3,21)(4,20)(5,9)(6,8)(7,11)(10,12)(14,18)(15,17)(19,23)(22,24), (1,5,4)(2,3,6)(7,22,16)(8,17,23)(9,24,18)(10,13,19)(11,20,14)(12,15,21), (1,2)(3,4)(5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24) );

G=PermutationGroup([[(1,18),(2,15),(3,21),(5,9),(7,11),(13,17),(14,16),(19,23)], [(3,21),(4,24),(5,9),(6,12),(7,11),(8,10),(19,23),(20,22)], [(1,18),(2,15),(3,23),(4,22),(5,11),(6,10),(7,9),(8,12),(13,17),(14,16),(19,21),(20,24)], [(1,16),(2,13),(3,21),(4,20),(5,9),(6,8),(7,11),(10,12),(14,18),(15,17),(19,23),(22,24)], [(1,5,4),(2,3,6),(7,22,16),(8,17,23),(9,24,18),(10,13,19),(11,20,14),(12,15,21)], [(1,2),(3,4),(5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)]])

G:=TransitiveGroup(24,694);

On 24 points - transitive group 24T695
Generators in S24
(1 8)(2 13)(4 15)(5 12)(9 21)(11 23)(16 24)(18 20)
(1 20)(2 21)(4 23)(5 24)(8 18)(9 13)(11 15)(12 16)
(1 8)(2 9)(3 22)(4 15)(5 16)(6 19)(7 17)(10 14)(11 23)(12 24)(13 21)(18 20)
(1 20)(2 13)(3 14)(4 23)(5 12)(6 7)(8 18)(9 21)(10 22)(11 15)(16 24)(17 19)
(7 17 19)(8 20 18)(9 13 21)(10 22 14)(11 15 23)(12 24 16)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)

G:=sub<Sym(24)| (1,8)(2,13)(4,15)(5,12)(9,21)(11,23)(16,24)(18,20), (1,20)(2,21)(4,23)(5,24)(8,18)(9,13)(11,15)(12,16), (1,8)(2,9)(3,22)(4,15)(5,16)(6,19)(7,17)(10,14)(11,23)(12,24)(13,21)(18,20), (1,20)(2,13)(3,14)(4,23)(5,12)(6,7)(8,18)(9,21)(10,22)(11,15)(16,24)(17,19), (7,17,19)(8,20,18)(9,13,21)(10,22,14)(11,15,23)(12,24,16), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)>;

G:=Group( (1,8)(2,13)(4,15)(5,12)(9,21)(11,23)(16,24)(18,20), (1,20)(2,21)(4,23)(5,24)(8,18)(9,13)(11,15)(12,16), (1,8)(2,9)(3,22)(4,15)(5,16)(6,19)(7,17)(10,14)(11,23)(12,24)(13,21)(18,20), (1,20)(2,13)(3,14)(4,23)(5,12)(6,7)(8,18)(9,21)(10,22)(11,15)(16,24)(17,19), (7,17,19)(8,20,18)(9,13,21)(10,22,14)(11,15,23)(12,24,16), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24) );

G=PermutationGroup([[(1,8),(2,13),(4,15),(5,12),(9,21),(11,23),(16,24),(18,20)], [(1,20),(2,21),(4,23),(5,24),(8,18),(9,13),(11,15),(12,16)], [(1,8),(2,9),(3,22),(4,15),(5,16),(6,19),(7,17),(10,14),(11,23),(12,24),(13,21),(18,20)], [(1,20),(2,13),(3,14),(4,23),(5,12),(6,7),(8,18),(9,21),(10,22),(11,15),(16,24),(17,19)], [(7,17,19),(8,20,18),(9,13,21),(10,22,14),(11,15,23),(12,24,16)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)]])

G:=TransitiveGroup(24,695);

On 24 points - transitive group 24T702
Generators in S24
(1 20)(2 21)(3 18)(4 13)(5 10)(6 11)(7 17)(8 22)(9 23)(12 16)(14 24)(15 19)
(1 12)(2 17)(3 22)(4 9)(5 14)(6 19)(7 21)(8 18)(10 24)(11 15)(13 23)(16 20)
(2 17)(4 9)(6 19)(7 21)(11 15)(13 23)
(2 7)(4 23)(6 15)(9 13)(11 19)(17 21)
(1 5 3)(2 4 6)(7 13 19)(8 20 14)(9 15 21)(10 22 16)(11 17 23)(12 24 18)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)

G:=sub<Sym(24)| (1,20)(2,21)(3,18)(4,13)(5,10)(6,11)(7,17)(8,22)(9,23)(12,16)(14,24)(15,19), (1,12)(2,17)(3,22)(4,9)(5,14)(6,19)(7,21)(8,18)(10,24)(11,15)(13,23)(16,20), (2,17)(4,9)(6,19)(7,21)(11,15)(13,23), (2,7)(4,23)(6,15)(9,13)(11,19)(17,21), (1,5,3)(2,4,6)(7,13,19)(8,20,14)(9,15,21)(10,22,16)(11,17,23)(12,24,18), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)>;

G:=Group( (1,20)(2,21)(3,18)(4,13)(5,10)(6,11)(7,17)(8,22)(9,23)(12,16)(14,24)(15,19), (1,12)(2,17)(3,22)(4,9)(5,14)(6,19)(7,21)(8,18)(10,24)(11,15)(13,23)(16,20), (2,17)(4,9)(6,19)(7,21)(11,15)(13,23), (2,7)(4,23)(6,15)(9,13)(11,19)(17,21), (1,5,3)(2,4,6)(7,13,19)(8,20,14)(9,15,21)(10,22,16)(11,17,23)(12,24,18), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24) );

G=PermutationGroup([[(1,20),(2,21),(3,18),(4,13),(5,10),(6,11),(7,17),(8,22),(9,23),(12,16),(14,24),(15,19)], [(1,12),(2,17),(3,22),(4,9),(5,14),(6,19),(7,21),(8,18),(10,24),(11,15),(13,23),(16,20)], [(2,17),(4,9),(6,19),(7,21),(11,15),(13,23)], [(2,7),(4,23),(6,15),(9,13),(11,19),(17,21)], [(1,5,3),(2,4,6),(7,13,19),(8,20,14),(9,15,21),(10,22,16),(11,17,23),(12,24,18)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)]])

G:=TransitiveGroup(24,702);

On 24 points - transitive group 24T703
Generators in S24
(1 24)(2 19)(3 10)(4 11)(5 16)(6 17)(7 23)(8 18)(9 13)(12 22)(14 20)(15 21)
(1 18)(2 9)(3 20)(4 15)(5 12)(6 23)(7 17)(8 24)(10 14)(11 21)(13 19)(16 22)
(2 9)(4 15)(6 23)(7 17)(11 21)(13 19)
(2 13)(4 21)(6 7)(9 19)(11 15)(17 23)
(7 17 23)(8 24 18)(9 13 19)(10 20 14)(11 15 21)(12 22 16)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)

G:=sub<Sym(24)| (1,24)(2,19)(3,10)(4,11)(5,16)(6,17)(7,23)(8,18)(9,13)(12,22)(14,20)(15,21), (1,18)(2,9)(3,20)(4,15)(5,12)(6,23)(7,17)(8,24)(10,14)(11,21)(13,19)(16,22), (2,9)(4,15)(6,23)(7,17)(11,21)(13,19), (2,13)(4,21)(6,7)(9,19)(11,15)(17,23), (7,17,23)(8,24,18)(9,13,19)(10,20,14)(11,15,21)(12,22,16), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)>;

G:=Group( (1,24)(2,19)(3,10)(4,11)(5,16)(6,17)(7,23)(8,18)(9,13)(12,22)(14,20)(15,21), (1,18)(2,9)(3,20)(4,15)(5,12)(6,23)(7,17)(8,24)(10,14)(11,21)(13,19)(16,22), (2,9)(4,15)(6,23)(7,17)(11,21)(13,19), (2,13)(4,21)(6,7)(9,19)(11,15)(17,23), (7,17,23)(8,24,18)(9,13,19)(10,20,14)(11,15,21)(12,22,16), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24) );

G=PermutationGroup([[(1,24),(2,19),(3,10),(4,11),(5,16),(6,17),(7,23),(8,18),(9,13),(12,22),(14,20),(15,21)], [(1,18),(2,9),(3,20),(4,15),(5,12),(6,23),(7,17),(8,24),(10,14),(11,21),(13,19),(16,22)], [(2,9),(4,15),(6,23),(7,17),(11,21),(13,19)], [(2,13),(4,21),(6,7),(9,19),(11,15),(17,23)], [(7,17,23),(8,24,18),(9,13,19),(10,20,14),(11,15,21),(12,22,16)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)]])

G:=TransitiveGroup(24,703);

On 24 points - transitive group 24T704
Generators in S24
(1 13)(2 14)(3 8)(4 7)(5 19)(6 24)(9 11)(10 12)(15 17)(16 18)(20 22)(21 23)
(1 15)(2 18)(3 12)(4 9)(5 23)(6 20)(7 11)(8 10)(13 17)(14 16)(19 21)(22 24)
(2 18)(3 12)(5 23)(8 10)(14 16)(19 21)
(2 16)(3 10)(5 21)(8 12)(14 18)(19 23)
(1 6 4)(2 3 5)(7 15 22)(8 23 16)(9 17 24)(10 19 18)(11 13 20)(12 21 14)
(1 2)(3 4)(5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)

G:=sub<Sym(24)| (1,13)(2,14)(3,8)(4,7)(5,19)(6,24)(9,11)(10,12)(15,17)(16,18)(20,22)(21,23), (1,15)(2,18)(3,12)(4,9)(5,23)(6,20)(7,11)(8,10)(13,17)(14,16)(19,21)(22,24), (2,18)(3,12)(5,23)(8,10)(14,16)(19,21), (2,16)(3,10)(5,21)(8,12)(14,18)(19,23), (1,6,4)(2,3,5)(7,15,22)(8,23,16)(9,17,24)(10,19,18)(11,13,20)(12,21,14), (1,2)(3,4)(5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)>;

G:=Group( (1,13)(2,14)(3,8)(4,7)(5,19)(6,24)(9,11)(10,12)(15,17)(16,18)(20,22)(21,23), (1,15)(2,18)(3,12)(4,9)(5,23)(6,20)(7,11)(8,10)(13,17)(14,16)(19,21)(22,24), (2,18)(3,12)(5,23)(8,10)(14,16)(19,21), (2,16)(3,10)(5,21)(8,12)(14,18)(19,23), (1,6,4)(2,3,5)(7,15,22)(8,23,16)(9,17,24)(10,19,18)(11,13,20)(12,21,14), (1,2)(3,4)(5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24) );

G=PermutationGroup([[(1,13),(2,14),(3,8),(4,7),(5,19),(6,24),(9,11),(10,12),(15,17),(16,18),(20,22),(21,23)], [(1,15),(2,18),(3,12),(4,9),(5,23),(6,20),(7,11),(8,10),(13,17),(14,16),(19,21),(22,24)], [(2,18),(3,12),(5,23),(8,10),(14,16),(19,21)], [(2,16),(3,10),(5,21),(8,12),(14,18),(19,23)], [(1,6,4),(2,3,5),(7,15,22),(8,23,16),(9,17,24),(10,19,18),(11,13,20),(12,21,14)], [(1,2),(3,4),(5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)]])

G:=TransitiveGroup(24,704);

Polynomial with Galois group A4wrC2 over Q
actionf(x)Disc(f)
8T42x8-2x7-12x6+16x5+52x4-26x3-80x2-24x-1218·54·3792
12T126x12-12x10+48x8-80x6+54x4-13x2+1212·56·1394
12T128x12-64x10-24x9+1450x8+1024x7-13572x6-13376x5+45009x4+58784x3-8716x2-28424x-6776260·34·72·112·1038·14812·154512·241132
12T129x12-62x10-48x9+1114x8+1984x7-5232x6-14872x5-4455x4+12320x3+8780x2+1380x-73227·32·1038·2292·38772·40032·22587912

Matrix representation of A4wrC2 in GL6(Z)

001000
-1-1-1000
100000
000010
000100
000-1-1-1
,
-1-1-1000
001000
010000
000-1-1-1
000001
000010
,
100000
010000
001000
000-1-1-1
000001
000010
,
100000
010000
001000
000001
000-1-1-1
000100
,
100000
-1-1-1000
010000
000100
000001
000-1-1-1
,
000100
000001
000-1-1-1
100000
001000
-1-1-1000

G:=sub<GL(6,Integers())| [0,-1,1,0,0,0,0,-1,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,1,-1,0,0,0,1,0,-1,0,0,0,0,0,-1],[-1,0,0,0,0,0,-1,0,1,0,0,0,-1,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,-1,0,1,0,0,0,-1,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,-1,0,1,0,0,0,-1,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,1,0,0,0,0,-1,0,0,0,0,1,-1,0],[1,-1,0,0,0,0,0,-1,1,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,-1,0,0,0,0,1,-1],[0,0,0,1,0,-1,0,0,0,0,0,-1,0,0,0,0,1,-1,1,0,-1,0,0,0,0,0,-1,0,0,0,0,1,-1,0,0,0] >;

A4wrC2 in GAP, Magma, Sage, TeX

A_4\wr C_2
% in TeX

G:=Group("A4wrC2");
// GroupNames label

G:=SmallGroup(288,1025);
// by ID

G=gap.SmallGroup(288,1025);
# by ID

G:=PCGroup([7,-2,-3,-3,-2,2,2,2,254,2019,766,185,5044,326,333,761,4548,1531,1770,1777,608]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^3=f^6=1,e*a*e^-1=a*b=b*a,a*c=c*a,f*a*f^-1=a*d=d*a,f*d*f^-1=b*c=c*b,b*d=d*b,e*b*e^-1=a,f*b*f^-1=a*b*c,e*c*e^-1=c*d=d*c,f*c*f^-1=a*b*d,e*d*e^-1=c,f*e*f^-1=e^-1>;
// generators/relations

Export

Subgroup lattice of A4wrC2 in TeX
Character table of A4wrC2 in TeX

׿
x
:
Z
F
o
wr
Q
<