Extensions 1→N→G→Q→1 with N=C5×C30 and Q=C2

Direct product G=N×Q with N=C5×C30 and Q=C2
dρLabelID
C10×C30300C10xC30300,49

Semidirect products G=N:Q with N=C5×C30 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C5×C30)⋊1C2 = C2×C5⋊D15φ: C2/C1C2 ⊆ Aut C5×C30150(C5xC30):1C2300,48
(C5×C30)⋊2C2 = C10×D15φ: C2/C1C2 ⊆ Aut C5×C30602(C5xC30):2C2300,47
(C5×C30)⋊3C2 = D5×C30φ: C2/C1C2 ⊆ Aut C5×C30602(C5xC30):3C2300,44
(C5×C30)⋊4C2 = C6×C5⋊D5φ: C2/C1C2 ⊆ Aut C5×C30150(C5xC30):4C2300,45
(C5×C30)⋊5C2 = S3×C5×C10φ: C2/C1C2 ⊆ Aut C5×C30150(C5xC30):5C2300,46

Non-split extensions G=N.Q with N=C5×C30 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C5×C30).1C2 = C30.D5φ: C2/C1C2 ⊆ Aut C5×C30300(C5xC30).1C2300,20
(C5×C30).2C2 = C5×Dic15φ: C2/C1C2 ⊆ Aut C5×C30602(C5xC30).2C2300,19
(C5×C30).3C2 = C15×Dic5φ: C2/C1C2 ⊆ Aut C5×C30602(C5xC30).3C2300,16
(C5×C30).4C2 = C3×C526C4φ: C2/C1C2 ⊆ Aut C5×C30300(C5xC30).4C2300,17
(C5×C30).5C2 = Dic3×C52φ: C2/C1C2 ⊆ Aut C5×C30300(C5xC30).5C2300,18

׿
×
𝔽