direct product, metacyclic, supersoluble, monomial, A-group
Aliases: C5×Dic15, C15⋊3C20, C30.7D5, C30.1C10, C15⋊5Dic5, C10.4D15, C52⋊7Dic3, C6.(C5×D5), C3⋊(C5×Dic5), C10.(C5×S3), C2.(C5×D15), (C5×C15)⋊10C4, (C5×C10).2S3, (C5×C30).2C2, C5⋊2(C5×Dic3), SmallGroup(300,19)
Series: Derived ►Chief ►Lower central ►Upper central
C15 — C5×Dic15 |
Generators and relations for C5×Dic15
G = < a,b,c | a5=b30=1, c2=b15, ab=ba, ac=ca, cbc-1=b-1 >
(1 25 19 13 7)(2 26 20 14 8)(3 27 21 15 9)(4 28 22 16 10)(5 29 23 17 11)(6 30 24 18 12)(31 37 43 49 55)(32 38 44 50 56)(33 39 45 51 57)(34 40 46 52 58)(35 41 47 53 59)(36 42 48 54 60)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)
(1 36 16 51)(2 35 17 50)(3 34 18 49)(4 33 19 48)(5 32 20 47)(6 31 21 46)(7 60 22 45)(8 59 23 44)(9 58 24 43)(10 57 25 42)(11 56 26 41)(12 55 27 40)(13 54 28 39)(14 53 29 38)(15 52 30 37)
G:=sub<Sym(60)| (1,25,19,13,7)(2,26,20,14,8)(3,27,21,15,9)(4,28,22,16,10)(5,29,23,17,11)(6,30,24,18,12)(31,37,43,49,55)(32,38,44,50,56)(33,39,45,51,57)(34,40,46,52,58)(35,41,47,53,59)(36,42,48,54,60), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,36,16,51)(2,35,17,50)(3,34,18,49)(4,33,19,48)(5,32,20,47)(6,31,21,46)(7,60,22,45)(8,59,23,44)(9,58,24,43)(10,57,25,42)(11,56,26,41)(12,55,27,40)(13,54,28,39)(14,53,29,38)(15,52,30,37)>;
G:=Group( (1,25,19,13,7)(2,26,20,14,8)(3,27,21,15,9)(4,28,22,16,10)(5,29,23,17,11)(6,30,24,18,12)(31,37,43,49,55)(32,38,44,50,56)(33,39,45,51,57)(34,40,46,52,58)(35,41,47,53,59)(36,42,48,54,60), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,36,16,51)(2,35,17,50)(3,34,18,49)(4,33,19,48)(5,32,20,47)(6,31,21,46)(7,60,22,45)(8,59,23,44)(9,58,24,43)(10,57,25,42)(11,56,26,41)(12,55,27,40)(13,54,28,39)(14,53,29,38)(15,52,30,37) );
G=PermutationGroup([[(1,25,19,13,7),(2,26,20,14,8),(3,27,21,15,9),(4,28,22,16,10),(5,29,23,17,11),(6,30,24,18,12),(31,37,43,49,55),(32,38,44,50,56),(33,39,45,51,57),(34,40,46,52,58),(35,41,47,53,59),(36,42,48,54,60)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)], [(1,36,16,51),(2,35,17,50),(3,34,18,49),(4,33,19,48),(5,32,20,47),(6,31,21,46),(7,60,22,45),(8,59,23,44),(9,58,24,43),(10,57,25,42),(11,56,26,41),(12,55,27,40),(13,54,28,39),(14,53,29,38),(15,52,30,37)]])
90 conjugacy classes
class | 1 | 2 | 3 | 4A | 4B | 5A | 5B | 5C | 5D | 5E | ··· | 5N | 6 | 10A | 10B | 10C | 10D | 10E | ··· | 10N | 15A | ··· | 15X | 20A | ··· | 20H | 30A | ··· | 30X |
order | 1 | 2 | 3 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | ··· | 5 | 6 | 10 | 10 | 10 | 10 | 10 | ··· | 10 | 15 | ··· | 15 | 20 | ··· | 20 | 30 | ··· | 30 |
size | 1 | 1 | 2 | 15 | 15 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 2 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 15 | ··· | 15 | 2 | ··· | 2 |
90 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | - | - | + | - | ||||||||||
image | C1 | C2 | C4 | C5 | C10 | C20 | S3 | D5 | Dic3 | Dic5 | C5×S3 | D15 | C5×D5 | C5×Dic3 | Dic15 | C5×Dic5 | C5×D15 | C5×Dic15 |
kernel | C5×Dic15 | C5×C30 | C5×C15 | Dic15 | C30 | C15 | C5×C10 | C30 | C52 | C15 | C10 | C10 | C6 | C5 | C5 | C3 | C2 | C1 |
# reps | 1 | 1 | 2 | 4 | 4 | 8 | 1 | 2 | 1 | 2 | 4 | 4 | 8 | 4 | 4 | 8 | 16 | 16 |
Matrix representation of C5×Dic15 ►in GL2(𝔽31) generated by
2 | 0 |
0 | 2 |
17 | 0 |
0 | 11 |
0 | 30 |
1 | 0 |
G:=sub<GL(2,GF(31))| [2,0,0,2],[17,0,0,11],[0,1,30,0] >;
C5×Dic15 in GAP, Magma, Sage, TeX
C_5\times {\rm Dic}_{15}
% in TeX
G:=Group("C5xDic15");
// GroupNames label
G:=SmallGroup(300,19);
// by ID
G=gap.SmallGroup(300,19);
# by ID
G:=PCGroup([5,-2,-5,-2,-3,-5,50,803,6004]);
// Polycyclic
G:=Group<a,b,c|a^5=b^30=1,c^2=b^15,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export