Extensions 1→N→G→Q→1 with N=C2×C4 and Q=D19

Direct product G=N×Q with N=C2×C4 and Q=D19
dρLabelID
C2×C4×D19152C2xC4xD19304,28

Semidirect products G=N:Q with N=C2×C4 and Q=D19
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊1D19 = D38⋊C4φ: D19/C19C2 ⊆ Aut C2×C4152(C2xC4):1D19304,13
(C2×C4)⋊2D19 = C2×D76φ: D19/C19C2 ⊆ Aut C2×C4152(C2xC4):2D19304,29
(C2×C4)⋊3D19 = D765C2φ: D19/C19C2 ⊆ Aut C2×C41522(C2xC4):3D19304,30

Non-split extensions G=N.Q with N=C2×C4 and Q=D19
extensionφ:Q→Aut NdρLabelID
(C2×C4).1D19 = Dic19⋊C4φ: D19/C19C2 ⊆ Aut C2×C4304(C2xC4).1D19304,11
(C2×C4).2D19 = C76.C4φ: D19/C19C2 ⊆ Aut C2×C41522(C2xC4).2D19304,9
(C2×C4).3D19 = C76⋊C4φ: D19/C19C2 ⊆ Aut C2×C4304(C2xC4).3D19304,12
(C2×C4).4D19 = C2×Dic38φ: D19/C19C2 ⊆ Aut C2×C4304(C2xC4).4D19304,27
(C2×C4).5D19 = C2×C19⋊C8central extension (φ=1)304(C2xC4).5D19304,8
(C2×C4).6D19 = C4×Dic19central extension (φ=1)304(C2xC4).6D19304,10

׿
×
𝔽