metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D19, C19⋊C2, sometimes denoted D38 or Dih19 or Dih38, SmallGroup(38,1)
Series: Derived ►Chief ►Lower central ►Upper central
C19 — D19 |
Generators and relations for D19
G = < a,b | a19=b2=1, bab=a-1 >
Character table of D19
class | 1 | 2 | 19A | 19B | 19C | 19D | 19E | 19F | 19G | 19H | 19I | |
size | 1 | 19 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | ζ1915+ζ194 | ζ1913+ζ196 | ζ1911+ζ198 | ζ1910+ζ199 | ζ1912+ζ197 | ζ1914+ζ195 | ζ1916+ζ193 | ζ1918+ζ19 | ζ1917+ζ192 | orthogonal faithful |
ρ4 | 2 | 0 | ζ1918+ζ19 | ζ1911+ζ198 | ζ1917+ζ192 | ζ1912+ζ197 | ζ1916+ζ193 | ζ1913+ζ196 | ζ1915+ζ194 | ζ1914+ζ195 | ζ1910+ζ199 | orthogonal faithful |
ρ5 | 2 | 0 | ζ1916+ζ193 | ζ1914+ζ195 | ζ1913+ζ196 | ζ1917+ζ192 | ζ1910+ζ199 | ζ1918+ζ19 | ζ1912+ζ197 | ζ1915+ζ194 | ζ1911+ζ198 | orthogonal faithful |
ρ6 | 2 | 0 | ζ1912+ζ197 | ζ1918+ζ19 | ζ1914+ζ195 | ζ1911+ζ198 | ζ1917+ζ192 | ζ1915+ζ194 | ζ1910+ζ199 | ζ1916+ζ193 | ζ1913+ζ196 | orthogonal faithful |
ρ7 | 2 | 0 | ζ1913+ζ196 | ζ1910+ζ199 | ζ1912+ζ197 | ζ1915+ζ194 | ζ1918+ζ19 | ζ1917+ζ192 | ζ1914+ζ195 | ζ1911+ζ198 | ζ1916+ζ193 | orthogonal faithful |
ρ8 | 2 | 0 | ζ1917+ζ192 | ζ1916+ζ193 | ζ1915+ζ194 | ζ1914+ζ195 | ζ1913+ζ196 | ζ1912+ζ197 | ζ1911+ζ198 | ζ1910+ζ199 | ζ1918+ζ19 | orthogonal faithful |
ρ9 | 2 | 0 | ζ1910+ζ199 | ζ1915+ζ194 | ζ1918+ζ19 | ζ1913+ζ196 | ζ1911+ζ198 | ζ1916+ζ193 | ζ1917+ζ192 | ζ1912+ζ197 | ζ1914+ζ195 | orthogonal faithful |
ρ10 | 2 | 0 | ζ1914+ζ195 | ζ1917+ζ192 | ζ1910+ζ199 | ζ1916+ζ193 | ζ1915+ζ194 | ζ1911+ζ198 | ζ1918+ζ19 | ζ1913+ζ196 | ζ1912+ζ197 | orthogonal faithful |
ρ11 | 2 | 0 | ζ1911+ζ198 | ζ1912+ζ197 | ζ1916+ζ193 | ζ1918+ζ19 | ζ1914+ζ195 | ζ1910+ζ199 | ζ1913+ζ196 | ζ1917+ζ192 | ζ1915+ζ194 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)
(1 19)(2 18)(3 17)(4 16)(5 15)(6 14)(7 13)(8 12)(9 11)
G:=sub<Sym(19)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19), (1,19)(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19), (1,19)(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)], [(1,19),(2,18),(3,17),(4,16),(5,15),(6,14),(7,13),(8,12),(9,11)]])
G:=TransitiveGroup(19,2);
D19 is a maximal subgroup of
C19⋊C6
D19p: D57 D95 D133 D209 D247 ...
D19 is a maximal quotient of
Dic19
D19p: D57 D95 D133 D209 D247 ...
Matrix representation of D19 ►in GL2(𝔽37) generated by
9 | 26 |
11 | 36 |
36 | 0 |
26 | 1 |
G:=sub<GL(2,GF(37))| [9,11,26,36],[36,26,0,1] >;
D19 in GAP, Magma, Sage, TeX
D_{19}
% in TeX
G:=Group("D19");
// GroupNames label
G:=SmallGroup(38,1);
// by ID
G=gap.SmallGroup(38,1);
# by ID
G:=PCGroup([2,-2,-19,145]);
// Polycyclic
G:=Group<a,b|a^19=b^2=1,b*a*b=a^-1>;
// generators/relations
Export
Subgroup lattice of D19 in TeX
Character table of D19 in TeX