Extensions 1→N→G→Q→1 with N=C3×Dic13 and Q=C2

Direct product G=N×Q with N=C3×Dic13 and Q=C2
dρLabelID
C6×Dic13312C6xDic13312,30

Semidirect products G=N:Q with N=C3×Dic13 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Dic13)⋊1C2 = S3×Dic13φ: C2/C1C2 ⊆ Out C3×Dic131564-(C3xDic13):1C2312,16
(C3×Dic13)⋊2C2 = D78.C2φ: C2/C1C2 ⊆ Out C3×Dic131564+(C3xDic13):2C2312,17
(C3×Dic13)⋊3C2 = C13⋊D12φ: C2/C1C2 ⊆ Out C3×Dic131564+(C3xDic13):3C2312,20
(C3×Dic13)⋊4C2 = C3×C13⋊D4φ: C2/C1C2 ⊆ Out C3×Dic131562(C3xDic13):4C2312,31
(C3×Dic13)⋊5C2 = C12×D13φ: trivial image1562(C3xDic13):5C2312,28

Non-split extensions G=N.Q with N=C3×Dic13 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Dic13).1C2 = C39⋊Q8φ: C2/C1C2 ⊆ Out C3×Dic133124-(C3xDic13).1C2312,21
(C3×Dic13).2C2 = C3×Dic26φ: C2/C1C2 ⊆ Out C3×Dic133122(C3xDic13).2C2312,27
(C3×Dic13).3C2 = C39⋊C8φ: C2/C1C2 ⊆ Out C3×Dic133124(C3xDic13).3C2312,14
(C3×Dic13).4C2 = C3×C13⋊C8φ: C2/C1C2 ⊆ Out C3×Dic133124(C3xDic13).4C2312,13

׿
×
𝔽