Copied to
clipboard

G = C39⋊C8order 312 = 23·3·13

1st semidirect product of C39 and C8 acting via C8/C2=C4

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C391C8, C78.1C4, C26.Dic3, Dic13.2S3, C13⋊(C3⋊C8), C3⋊(C13⋊C8), C6.(C13⋊C4), C2.(C39⋊C4), (C3×Dic13).3C2, SmallGroup(312,14)

Series: Derived Chief Lower central Upper central

C1C39 — C39⋊C8
C1C13C39C78C3×Dic13 — C39⋊C8
C39 — C39⋊C8
C1C2

Generators and relations for C39⋊C8
 G = < a,b | a39=b8=1, bab-1=a8 >

13C4
39C8
13C12
13C3⋊C8
3C13⋊C8

Character table of C39⋊C8

 class 1234A4B68A8B8C8D12A12B13A13B13C26A26B26C39A39B39C39D39E39F78A78B78C78D78E78F
 size 11213132393939392626444444444444444444
ρ1111111111111111111111111111111    trivial
ρ2111111-1-1-1-111111111111111111111    linear of order 2
ρ3111-1-11i-i-ii-1-1111111111111111111    linear of order 4
ρ4111-1-11-iii-i-1-1111111111111111111    linear of order 4
ρ51-11-ii-1ζ83ζ85ζ8ζ87i-i111-1-1-1111111-1-1-1-1-1-1    linear of order 8
ρ61-11i-i-1ζ85ζ83ζ87ζ8-ii111-1-1-1111111-1-1-1-1-1-1    linear of order 8
ρ71-11i-i-1ζ8ζ87ζ83ζ85-ii111-1-1-1111111-1-1-1-1-1-1    linear of order 8
ρ81-11-ii-1ζ87ζ8ζ85ζ83i-i111-1-1-1111111-1-1-1-1-1-1    linear of order 8
ρ922-122-10000-1-1222222-1-1-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ1022-1-2-2-1000011222222-1-1-1-1-1-1-1-1-1-1-1-1    symplectic lifted from Dic3, Schur index 2
ρ112-2-1-2i2i10000-ii222-2-2-2-1-1-1-1-1-1111111    complex lifted from C3⋊C8
ρ122-2-12i-2i10000i-i222-2-2-2-1-1-1-1-1-1111111    complex lifted from C3⋊C8
ρ13444004000000ζ139137136134ζ131213813513ζ13111310133132ζ13111310133132ζ139137136134ζ131213813513ζ131213813513ζ13111310133132ζ131213813513ζ13111310133132ζ139137136134ζ139137136134ζ131213813513ζ13111310133132ζ139137136134ζ13111310133132ζ139137136134ζ131213813513    orthogonal lifted from C13⋊C4
ρ14444004000000ζ13111310133132ζ139137136134ζ131213813513ζ131213813513ζ13111310133132ζ139137136134ζ139137136134ζ131213813513ζ139137136134ζ131213813513ζ13111310133132ζ13111310133132ζ139137136134ζ131213813513ζ13111310133132ζ131213813513ζ13111310133132ζ139137136134    orthogonal lifted from C13⋊C4
ρ15444004000000ζ131213813513ζ13111310133132ζ139137136134ζ139137136134ζ131213813513ζ13111310133132ζ13111310133132ζ139137136134ζ13111310133132ζ139137136134ζ131213813513ζ131213813513ζ13111310133132ζ139137136134ζ131213813513ζ139137136134ζ131213813513ζ13111310133132    orthogonal lifted from C13⋊C4
ρ164-4400-4000000ζ13111310133132ζ139137136134ζ13121381351313121381351313111310133132139137136134ζ139137136134ζ131213813513ζ139137136134ζ131213813513ζ13111310133132ζ131113101331321391371361341312138135131311131013313213121381351313111310133132139137136134    symplectic lifted from C13⋊C8, Schur index 2
ρ174-4400-4000000ζ139137136134ζ131213813513ζ1311131013313213111310133132139137136134131213813513ζ131213813513ζ13111310133132ζ131213813513ζ13111310133132ζ139137136134ζ1391371361341312138135131311131013313213913713613413111310133132139137136134131213813513    symplectic lifted from C13⋊C8, Schur index 2
ρ184-4400-4000000ζ131213813513ζ13111310133132ζ13913713613413913713613413121381351313111310133132ζ13111310133132ζ139137136134ζ13111310133132ζ139137136134ζ131213813513ζ1312138135131311131013313213913713613413121381351313913713613413121381351313111310133132    symplectic lifted from C13⋊C8, Schur index 2
ρ1944-200-2000000ζ13111310133132ζ139137136134ζ131213813513ζ131213813513ζ13111310133132ζ139137136134ζ3ζ1393ζ1373ζ1363ζ13413713632ζ131232ζ13832ζ13532ζ13131213ζ32ζ13932ζ13732ζ13632ζ134137136ζ32ζ131232ζ13832ζ13532ζ131381353ζ13113ζ13103ζ1333ζ1321311132ζ3ζ13113ζ13103ζ1333ζ1321310133ζ32ζ13932ζ13732ζ13632ζ134137136ζ32ζ131232ζ13832ζ13532ζ131381353ζ13113ζ13103ζ1333ζ132131113232ζ131232ζ13832ζ13532ζ13131213ζ3ζ13113ζ13103ζ1333ζ1321310133ζ3ζ1393ζ1373ζ1363ζ134137136    complex lifted from C39⋊C4
ρ2044-200-2000000ζ131213813513ζ13111310133132ζ139137136134ζ139137136134ζ131213813513ζ13111310133132ζ3ζ13113ζ13103ζ1333ζ1321310133ζ32ζ13932ζ13732ζ13632ζ1341371363ζ13113ζ13103ζ1333ζ1321311132ζ3ζ1393ζ1373ζ1363ζ134137136ζ32ζ131232ζ13832ζ13532ζ1313813532ζ131232ζ13832ζ13532ζ131312133ζ13113ζ13103ζ1333ζ1321311132ζ3ζ1393ζ1373ζ1363ζ134137136ζ32ζ131232ζ13832ζ13532ζ13138135ζ32ζ13932ζ13732ζ13632ζ13413713632ζ131232ζ13832ζ13532ζ13131213ζ3ζ13113ζ13103ζ1333ζ1321310133    complex lifted from C39⋊C4
ρ214-4-2002000000ζ131213813513ζ13111310133132ζ139137136134139137136134131213813513131113101331323ζ13113ζ13103ζ1333ζ1321311132ζ3ζ1393ζ1373ζ1363ζ134137136ζ3ζ13113ζ13103ζ1333ζ1321310133ζ32ζ13932ζ13732ζ13632ζ13413713632ζ131232ζ13832ζ13532ζ13131213ζ32ζ131232ζ13832ζ13532ζ131381353ζ13113ζ13103ζ1333ζ132131013332ζ13932ζ13732ζ13632ζ1341371363ζ13123ζ1383ζ1353ζ13138135ζ32ζ13932ζ13732ζ13632ζ134139134ζ3ζ13123ζ1383ζ1353ζ1313121332ζ131132ζ131032ζ13332ζ1321310133    complex faithful
ρ224-4-2002000000ζ131213813513ζ13111310133132ζ13913713613413913713613413121381351313111310133132ζ3ζ13113ζ13103ζ1333ζ1321310133ζ32ζ13932ζ13732ζ13632ζ1341371363ζ13113ζ13103ζ1333ζ1321311132ζ3ζ1393ζ1373ζ1363ζ134137136ζ32ζ131232ζ13832ζ13532ζ1313813532ζ131232ζ13832ζ13532ζ1313121332ζ131132ζ131032ζ13332ζ1321310133ζ32ζ13932ζ13732ζ13632ζ134139134ζ3ζ13123ζ1383ζ1353ζ1313121332ζ13932ζ13732ζ13632ζ1341371363ζ13123ζ1383ζ1353ζ131381353ζ13113ζ13103ζ1333ζ1321310133    complex faithful
ρ2344-200-2000000ζ139137136134ζ131213813513ζ13111310133132ζ13111310133132ζ139137136134ζ13121381351332ζ131232ζ13832ζ13532ζ131312133ζ13113ζ13103ζ1333ζ1321311132ζ32ζ131232ζ13832ζ13532ζ13138135ζ3ζ13113ζ13103ζ1333ζ1321310133ζ3ζ1393ζ1373ζ1363ζ134137136ζ32ζ13932ζ13732ζ13632ζ134137136ζ32ζ131232ζ13832ζ13532ζ13138135ζ3ζ13113ζ13103ζ1333ζ1321310133ζ3ζ1393ζ1373ζ1363ζ1341371363ζ13113ζ13103ζ1333ζ1321311132ζ32ζ13932ζ13732ζ13632ζ13413713632ζ131232ζ13832ζ13532ζ13131213    complex lifted from C39⋊C4
ρ244-4-2002000000ζ13111310133132ζ139137136134ζ13121381351313121381351313111310133132139137136134ζ3ζ1393ζ1373ζ1363ζ13413713632ζ131232ζ13832ζ13532ζ13131213ζ32ζ13932ζ13732ζ13632ζ134137136ζ32ζ131232ζ13832ζ13532ζ131381353ζ13113ζ13103ζ1333ζ1321311132ζ3ζ13113ζ13103ζ1333ζ132131013332ζ13932ζ13732ζ13632ζ134137136ζ3ζ13123ζ1383ζ1353ζ1313121332ζ131132ζ131032ζ13332ζ13213101333ζ13123ζ1383ζ1353ζ131381353ζ13113ζ13103ζ1333ζ1321310133ζ32ζ13932ζ13732ζ13632ζ134139134    complex faithful
ρ2544-200-2000000ζ13111310133132ζ139137136134ζ131213813513ζ131213813513ζ13111310133132ζ139137136134ζ32ζ13932ζ13732ζ13632ζ134137136ζ32ζ131232ζ13832ζ13532ζ13138135ζ3ζ1393ζ1373ζ1363ζ13413713632ζ131232ζ13832ζ13532ζ13131213ζ3ζ13113ζ13103ζ1333ζ13213101333ζ13113ζ13103ζ1333ζ1321311132ζ3ζ1393ζ1373ζ1363ζ13413713632ζ131232ζ13832ζ13532ζ13131213ζ3ζ13113ζ13103ζ1333ζ1321310133ζ32ζ131232ζ13832ζ13532ζ131381353ζ13113ζ13103ζ1333ζ1321311132ζ32ζ13932ζ13732ζ13632ζ134137136    complex lifted from C39⋊C4
ρ2644-200-2000000ζ139137136134ζ131213813513ζ13111310133132ζ13111310133132ζ139137136134ζ131213813513ζ32ζ131232ζ13832ζ13532ζ13138135ζ3ζ13113ζ13103ζ1333ζ132131013332ζ131232ζ13832ζ13532ζ131312133ζ13113ζ13103ζ1333ζ1321311132ζ32ζ13932ζ13732ζ13632ζ134137136ζ3ζ1393ζ1373ζ1363ζ13413713632ζ131232ζ13832ζ13532ζ131312133ζ13113ζ13103ζ1333ζ1321311132ζ32ζ13932ζ13732ζ13632ζ134137136ζ3ζ13113ζ13103ζ1333ζ1321310133ζ3ζ1393ζ1373ζ1363ζ134137136ζ32ζ131232ζ13832ζ13532ζ13138135    complex lifted from C39⋊C4
ρ2744-200-2000000ζ131213813513ζ13111310133132ζ139137136134ζ139137136134ζ131213813513ζ131113101331323ζ13113ζ13103ζ1333ζ1321311132ζ3ζ1393ζ1373ζ1363ζ134137136ζ3ζ13113ζ13103ζ1333ζ1321310133ζ32ζ13932ζ13732ζ13632ζ13413713632ζ131232ζ13832ζ13532ζ13131213ζ32ζ131232ζ13832ζ13532ζ13138135ζ3ζ13113ζ13103ζ1333ζ1321310133ζ32ζ13932ζ13732ζ13632ζ13413713632ζ131232ζ13832ζ13532ζ13131213ζ3ζ1393ζ1373ζ1363ζ134137136ζ32ζ131232ζ13832ζ13532ζ131381353ζ13113ζ13103ζ1333ζ1321311132    complex lifted from C39⋊C4
ρ284-4-2002000000ζ13111310133132ζ139137136134ζ13121381351313121381351313111310133132139137136134ζ32ζ13932ζ13732ζ13632ζ134137136ζ32ζ131232ζ13832ζ13532ζ13138135ζ3ζ1393ζ1373ζ1363ζ13413713632ζ131232ζ13832ζ13532ζ13131213ζ3ζ13113ζ13103ζ1333ζ13213101333ζ13113ζ13103ζ1333ζ1321311132ζ32ζ13932ζ13732ζ13632ζ1341391343ζ13123ζ1383ζ1353ζ131381353ζ13113ζ13103ζ1333ζ1321310133ζ3ζ13123ζ1383ζ1353ζ1313121332ζ131132ζ131032ζ13332ζ132131013332ζ13932ζ13732ζ13632ζ134137136    complex faithful
ρ294-4-2002000000ζ139137136134ζ131213813513ζ1311131013313213111310133132139137136134131213813513ζ32ζ131232ζ13832ζ13532ζ13138135ζ3ζ13113ζ13103ζ1333ζ132131013332ζ131232ζ13832ζ13532ζ131312133ζ13113ζ13103ζ1333ζ1321311132ζ32ζ13932ζ13732ζ13632ζ134137136ζ3ζ1393ζ1373ζ1363ζ1341371363ζ13123ζ1383ζ1353ζ1313813532ζ131132ζ131032ζ13332ζ132131013332ζ13932ζ13732ζ13632ζ1341371363ζ13113ζ13103ζ1333ζ1321310133ζ32ζ13932ζ13732ζ13632ζ134139134ζ3ζ13123ζ1383ζ1353ζ13131213    complex faithful
ρ304-4-2002000000ζ139137136134ζ131213813513ζ131113101331321311131013313213913713613413121381351332ζ131232ζ13832ζ13532ζ131312133ζ13113ζ13103ζ1333ζ1321311132ζ32ζ131232ζ13832ζ13532ζ13138135ζ3ζ13113ζ13103ζ1333ζ1321310133ζ3ζ1393ζ1373ζ1363ζ134137136ζ32ζ13932ζ13732ζ13632ζ134137136ζ3ζ13123ζ1383ζ1353ζ131312133ζ13113ζ13103ζ1333ζ1321310133ζ32ζ13932ζ13732ζ13632ζ13413913432ζ131132ζ131032ζ13332ζ132131013332ζ13932ζ13732ζ13632ζ1341371363ζ13123ζ1383ζ1353ζ13138135    complex faithful

Smallest permutation representation of C39⋊C8
Regular action on 312 points
Generators in S312
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195)(196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234)(235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273)(274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312)
(1 274 133 226 52 253 115 190)(2 279 119 234 53 258 101 159)(3 284 144 203 54 263 87 167)(4 289 130 211 55 268 112 175)(5 294 155 219 56 273 98 183)(6 299 141 227 57 239 84 191)(7 304 127 196 58 244 109 160)(8 309 152 204 59 249 95 168)(9 275 138 212 60 254 81 176)(10 280 124 220 61 259 106 184)(11 285 149 228 62 264 92 192)(12 290 135 197 63 269 117 161)(13 295 121 205 64 235 103 169)(14 300 146 213 65 240 89 177)(15 305 132 221 66 245 114 185)(16 310 118 229 67 250 100 193)(17 276 143 198 68 255 86 162)(18 281 129 206 69 260 111 170)(19 286 154 214 70 265 97 178)(20 291 140 222 71 270 83 186)(21 296 126 230 72 236 108 194)(22 301 151 199 73 241 94 163)(23 306 137 207 74 246 80 171)(24 311 123 215 75 251 105 179)(25 277 148 223 76 256 91 187)(26 282 134 231 77 261 116 195)(27 287 120 200 78 266 102 164)(28 292 145 208 40 271 88 172)(29 297 131 216 41 237 113 180)(30 302 156 224 42 242 99 188)(31 307 142 232 43 247 85 157)(32 312 128 201 44 252 110 165)(33 278 153 209 45 257 96 173)(34 283 139 217 46 262 82 181)(35 288 125 225 47 267 107 189)(36 293 150 233 48 272 93 158)(37 298 136 202 49 238 79 166)(38 303 122 210 50 243 104 174)(39 308 147 218 51 248 90 182)

G:=sub<Sym(312)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195)(196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234)(235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273)(274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312), (1,274,133,226,52,253,115,190)(2,279,119,234,53,258,101,159)(3,284,144,203,54,263,87,167)(4,289,130,211,55,268,112,175)(5,294,155,219,56,273,98,183)(6,299,141,227,57,239,84,191)(7,304,127,196,58,244,109,160)(8,309,152,204,59,249,95,168)(9,275,138,212,60,254,81,176)(10,280,124,220,61,259,106,184)(11,285,149,228,62,264,92,192)(12,290,135,197,63,269,117,161)(13,295,121,205,64,235,103,169)(14,300,146,213,65,240,89,177)(15,305,132,221,66,245,114,185)(16,310,118,229,67,250,100,193)(17,276,143,198,68,255,86,162)(18,281,129,206,69,260,111,170)(19,286,154,214,70,265,97,178)(20,291,140,222,71,270,83,186)(21,296,126,230,72,236,108,194)(22,301,151,199,73,241,94,163)(23,306,137,207,74,246,80,171)(24,311,123,215,75,251,105,179)(25,277,148,223,76,256,91,187)(26,282,134,231,77,261,116,195)(27,287,120,200,78,266,102,164)(28,292,145,208,40,271,88,172)(29,297,131,216,41,237,113,180)(30,302,156,224,42,242,99,188)(31,307,142,232,43,247,85,157)(32,312,128,201,44,252,110,165)(33,278,153,209,45,257,96,173)(34,283,139,217,46,262,82,181)(35,288,125,225,47,267,107,189)(36,293,150,233,48,272,93,158)(37,298,136,202,49,238,79,166)(38,303,122,210,50,243,104,174)(39,308,147,218,51,248,90,182)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195)(196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234)(235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273)(274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312), (1,274,133,226,52,253,115,190)(2,279,119,234,53,258,101,159)(3,284,144,203,54,263,87,167)(4,289,130,211,55,268,112,175)(5,294,155,219,56,273,98,183)(6,299,141,227,57,239,84,191)(7,304,127,196,58,244,109,160)(8,309,152,204,59,249,95,168)(9,275,138,212,60,254,81,176)(10,280,124,220,61,259,106,184)(11,285,149,228,62,264,92,192)(12,290,135,197,63,269,117,161)(13,295,121,205,64,235,103,169)(14,300,146,213,65,240,89,177)(15,305,132,221,66,245,114,185)(16,310,118,229,67,250,100,193)(17,276,143,198,68,255,86,162)(18,281,129,206,69,260,111,170)(19,286,154,214,70,265,97,178)(20,291,140,222,71,270,83,186)(21,296,126,230,72,236,108,194)(22,301,151,199,73,241,94,163)(23,306,137,207,74,246,80,171)(24,311,123,215,75,251,105,179)(25,277,148,223,76,256,91,187)(26,282,134,231,77,261,116,195)(27,287,120,200,78,266,102,164)(28,292,145,208,40,271,88,172)(29,297,131,216,41,237,113,180)(30,302,156,224,42,242,99,188)(31,307,142,232,43,247,85,157)(32,312,128,201,44,252,110,165)(33,278,153,209,45,257,96,173)(34,283,139,217,46,262,82,181)(35,288,125,225,47,267,107,189)(36,293,150,233,48,272,93,158)(37,298,136,202,49,238,79,166)(38,303,122,210,50,243,104,174)(39,308,147,218,51,248,90,182) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195),(196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234),(235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273),(274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312)], [(1,274,133,226,52,253,115,190),(2,279,119,234,53,258,101,159),(3,284,144,203,54,263,87,167),(4,289,130,211,55,268,112,175),(5,294,155,219,56,273,98,183),(6,299,141,227,57,239,84,191),(7,304,127,196,58,244,109,160),(8,309,152,204,59,249,95,168),(9,275,138,212,60,254,81,176),(10,280,124,220,61,259,106,184),(11,285,149,228,62,264,92,192),(12,290,135,197,63,269,117,161),(13,295,121,205,64,235,103,169),(14,300,146,213,65,240,89,177),(15,305,132,221,66,245,114,185),(16,310,118,229,67,250,100,193),(17,276,143,198,68,255,86,162),(18,281,129,206,69,260,111,170),(19,286,154,214,70,265,97,178),(20,291,140,222,71,270,83,186),(21,296,126,230,72,236,108,194),(22,301,151,199,73,241,94,163),(23,306,137,207,74,246,80,171),(24,311,123,215,75,251,105,179),(25,277,148,223,76,256,91,187),(26,282,134,231,77,261,116,195),(27,287,120,200,78,266,102,164),(28,292,145,208,40,271,88,172),(29,297,131,216,41,237,113,180),(30,302,156,224,42,242,99,188),(31,307,142,232,43,247,85,157),(32,312,128,201,44,252,110,165),(33,278,153,209,45,257,96,173),(34,283,139,217,46,262,82,181),(35,288,125,225,47,267,107,189),(36,293,150,233,48,272,93,158),(37,298,136,202,49,238,79,166),(38,303,122,210,50,243,104,174),(39,308,147,218,51,248,90,182)]])

Matrix representation of C39⋊C8 in GL4(𝔽5) generated by

4004
4132
2113
0442
,
1400
1004
4040
1020
G:=sub<GL(4,GF(5))| [4,4,2,0,0,1,1,4,0,3,1,4,4,2,3,2],[1,1,4,1,4,0,0,0,0,0,4,2,0,4,0,0] >;

C39⋊C8 in GAP, Magma, Sage, TeX

C_{39}\rtimes C_8
% in TeX

G:=Group("C39:C8");
// GroupNames label

G:=SmallGroup(312,14);
// by ID

G=gap.SmallGroup(312,14);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-13,10,26,323,3004,3609]);
// Polycyclic

G:=Group<a,b|a^39=b^8=1,b*a*b^-1=a^8>;
// generators/relations

Export

Subgroup lattice of C39⋊C8 in TeX
Character table of C39⋊C8 in TeX

׿
×
𝔽