Extensions 1→N→G→Q→1 with N=C5×C10 and Q=S3

Direct product G=N×Q with N=C5×C10 and Q=S3
dρLabelID
S3×C5×C10150S3xC5xC10300,46

Semidirect products G=N:Q with N=C5×C10 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C5×C10)⋊S3 = C2×C52⋊S3φ: S3/C1S3 ⊆ Aut C5×C10303(C5xC10):S3300,26
(C5×C10)⋊2S3 = C10×D15φ: S3/C3C2 ⊆ Aut C5×C10602(C5xC10):2S3300,47
(C5×C10)⋊3S3 = C2×C5⋊D15φ: S3/C3C2 ⊆ Aut C5×C10150(C5xC10):3S3300,48

Non-split extensions G=N.Q with N=C5×C10 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C5×C10).S3 = C522Dic3φ: S3/C1S3 ⊆ Aut C5×C10603(C5xC10).S3300,13
(C5×C10).2S3 = C5×Dic15φ: S3/C3C2 ⊆ Aut C5×C10602(C5xC10).2S3300,19
(C5×C10).3S3 = C30.D5φ: S3/C3C2 ⊆ Aut C5×C10300(C5xC10).3S3300,20
(C5×C10).4S3 = Dic3×C52central extension (φ=1)300(C5xC10).4S3300,18

׿
×
𝔽