Copied to
clipboard

G = (C2×D4).F5order 320 = 26·5

1st non-split extension by C2×D4 of F5 acting via F5/C5=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C10.5C4≀C2, (C2×D4).1F5, (D4×C10).1C4, C2.7(D4⋊F5), (C2×Dic10).5C4, C2.4(C23.F5), C10.C421C2, (C2×Dic5).106D4, C20.17D4.2C2, C10.3(C4.D4), (C4×Dic5).3C22, C51(C42.C22), C22.60(C22⋊F5), (C2×C4).15(C2×F5), (C2×C20).10(C2×C4), (C2×C10).34(C22⋊C4), SmallGroup(320,259)

Series: Derived Chief Lower central Upper central

C1C2×C20 — (C2×D4).F5
C1C5C10C2×C10C2×Dic5C4×Dic5C10.C42 — (C2×D4).F5
C5C2×C10C2×C20 — (C2×D4).F5
C1C22C2×C4C2×D4

Generators and relations for (C2×D4).F5
 G = < a,b,c,d,e | a2=b4=c2=d5=1, e4=a, ebe-1=ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, cd=dc, ece-1=b-1c, ede-1=d3 >

Subgroups: 298 in 70 conjugacy classes, 22 normal (14 characteristic)
C1, C2, C2, C2, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, C10, C10, C10, C42, C22⋊C4, C2×C8, C2×D4, C2×Q8, Dic5, C20, C2×C10, C2×C10, C8⋊C4, C4.4D4, C5⋊C8, Dic10, C2×Dic5, C2×Dic5, C2×C20, C5×D4, C22×C10, C42.C22, C4×Dic5, C23.D5, C2×C5⋊C8, C2×Dic10, D4×C10, C10.C42, C20.17D4, (C2×D4).F5
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, F5, C4.D4, C4≀C2, C2×F5, C42.C22, C22⋊F5, D4⋊F5, C23.F5, (C2×D4).F5

Character table of (C2×D4).F5

 class 12A2B2C2D4A4B4C4D4E4F58A8B8C8D8E8F8G8H10A10B10C10D10E10F10G20A20B
 size 111184101010104042020202020202020444888888
ρ111111111111111111111111111111    trivial
ρ21111-111111-111-1-1-1-1111111-1-1-1-111    linear of order 2
ρ31111-111111-11-11111-1-1-1111-1-1-1-111    linear of order 2
ρ4111111111111-1-1-1-1-1-1-1-1111111111    linear of order 2
ρ5111111-1-1-1-1-11-iii-i-iii-i111111111    linear of order 4
ρ61111-11-1-1-1-111-i-i-iiiii-i111-1-1-1-111    linear of order 4
ρ71111-11-1-1-1-111iii-i-i-i-ii111-1-1-1-111    linear of order 4
ρ8111111-1-1-1-1-11i-i-iii-i-ii111111111    linear of order 4
ρ922220-222-2-202000000002220000-2-2    orthogonal lifted from D4
ρ1022220-2-2-22202000000002220000-2-2    orthogonal lifted from D4
ρ112-22-20000-2i2i02-1-i0000-1+i1-i1+i2-2-2000000    complex lifted from C4≀C2
ρ122-22-20000-2i2i021+i00001-i-1+i-1-i2-2-2000000    complex lifted from C4≀C2
ρ1322-2-2002i-2i000201+i-1-i1-i-1+i000-2-22000000    complex lifted from C4≀C2
ρ1422-2-200-2i2i00020-1+i1-i-1-i1+i000-2-22000000    complex lifted from C4≀C2
ρ1522-2-2002i-2i00020-1-i1+i-1+i1-i000-2-22000000    complex lifted from C4≀C2
ρ162-22-200002i-2i02-1+i0000-1-i1+i1-i2-2-2000000    complex lifted from C4≀C2
ρ172-22-200002i-2i021-i00001+i-1-i-1+i2-2-2000000    complex lifted from C4≀C2
ρ1822-2-200-2i2i000201-i-1+i1+i-1-i000-2-22000000    complex lifted from C4≀C2
ρ1944444400000-100000000-1-1-1-1-1-1-1-1-1    orthogonal lifted from F5
ρ204444-4400000-100000000-1-1-11111-1-1    orthogonal lifted from C2×F5
ρ214-4-440000000400000000-44-4000000    orthogonal lifted from C4.D4
ρ2244440-400000-100000000-1-1-155-5-511    orthogonal lifted from C22⋊F5
ρ2344440-400000-100000000-1-1-1-5-55511    orthogonal lifted from C22⋊F5
ρ244-4-440000000-1000000001-1154+2ζ53+152+2ζ5+154+2ζ52+153+2ζ5+1-55    complex lifted from C23.F5
ρ254-4-440000000-1000000001-1152+2ζ5+154+2ζ53+153+2ζ5+154+2ζ52+1-55    complex lifted from C23.F5
ρ264-4-440000000-1000000001-1153+2ζ5+154+2ζ52+154+2ζ53+152+2ζ5+15-5    complex lifted from C23.F5
ρ274-4-440000000-1000000001-1154+2ζ52+153+2ζ5+152+2ζ5+154+2ζ53+15-5    complex lifted from C23.F5
ρ2888-8-80000000-20000000022-2000000    symplectic lifted from D4⋊F5, Schur index 2
ρ298-88-80000000-200000000-222000000    symplectic lifted from D4⋊F5, Schur index 2

Smallest permutation representation of (C2×D4).F5
On 160 points
Generators in S160
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)(65 69)(66 70)(67 71)(68 72)(73 77)(74 78)(75 79)(76 80)(81 85)(82 86)(83 87)(84 88)(89 93)(90 94)(91 95)(92 96)(97 101)(98 102)(99 103)(100 104)(105 109)(106 110)(107 111)(108 112)(113 117)(114 118)(115 119)(116 120)(121 125)(122 126)(123 127)(124 128)(129 133)(130 134)(131 135)(132 136)(137 141)(138 142)(139 143)(140 144)(145 149)(146 150)(147 151)(148 152)(153 157)(154 158)(155 159)(156 160)
(1 63 143 35)(2 60 144 40)(3 57 137 37)(4 62 138 34)(5 59 139 39)(6 64 140 36)(7 61 141 33)(8 58 142 38)(9 53 21 82)(10 50 22 87)(11 55 23 84)(12 52 24 81)(13 49 17 86)(14 54 18 83)(15 51 19 88)(16 56 20 85)(25 96 156 108)(26 93 157 105)(27 90 158 110)(28 95 159 107)(29 92 160 112)(30 89 153 109)(31 94 154 106)(32 91 155 111)(41 74 132 69)(42 79 133 66)(43 76 134 71)(44 73 135 68)(45 78 136 65)(46 75 129 70)(47 80 130 67)(48 77 131 72)(97 114 121 148)(98 119 122 145)(99 116 123 150)(100 113 124 147)(101 118 125 152)(102 115 126 149)(103 120 127 146)(104 117 128 151)
(2 64)(3 141)(4 34)(6 60)(7 137)(8 38)(9 17)(10 87)(12 56)(13 21)(14 83)(16 52)(18 54)(20 81)(22 50)(24 85)(25 92)(26 153)(27 110)(29 96)(30 157)(31 106)(33 37)(35 63)(36 144)(39 59)(40 140)(41 65)(42 46)(43 76)(44 135)(45 69)(47 80)(48 131)(49 53)(51 88)(55 84)(57 61)(58 142)(62 138)(66 75)(67 130)(70 79)(71 134)(74 136)(78 132)(82 86)(89 93)(90 158)(91 111)(94 154)(95 107)(97 118)(98 126)(99 150)(101 114)(102 122)(103 146)(105 109)(108 160)(112 156)(113 147)(115 119)(116 123)(117 151)(120 127)(121 152)(125 148)(129 133)(145 149)
(1 19 100 28 77)(2 29 20 78 101)(3 79 30 102 21)(4 103 80 22 31)(5 23 104 32 73)(6 25 24 74 97)(7 75 26 98 17)(8 99 76 18 27)(9 137 66 153 126)(10 154 138 127 67)(11 128 155 68 139)(12 69 121 140 156)(13 141 70 157 122)(14 158 142 123 71)(15 124 159 72 143)(16 65 125 144 160)(33 46 105 145 49)(34 146 47 50 106)(35 51 147 107 48)(36 108 52 41 148)(37 42 109 149 53)(38 150 43 54 110)(39 55 151 111 44)(40 112 56 45 152)(57 133 89 115 82)(58 116 134 83 90)(59 84 117 91 135)(60 92 85 136 118)(61 129 93 119 86)(62 120 130 87 94)(63 88 113 95 131)(64 96 81 132 114)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)

G:=sub<Sym(160)| (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112)(113,117)(114,118)(115,119)(116,120)(121,125)(122,126)(123,127)(124,128)(129,133)(130,134)(131,135)(132,136)(137,141)(138,142)(139,143)(140,144)(145,149)(146,150)(147,151)(148,152)(153,157)(154,158)(155,159)(156,160), (1,63,143,35)(2,60,144,40)(3,57,137,37)(4,62,138,34)(5,59,139,39)(6,64,140,36)(7,61,141,33)(8,58,142,38)(9,53,21,82)(10,50,22,87)(11,55,23,84)(12,52,24,81)(13,49,17,86)(14,54,18,83)(15,51,19,88)(16,56,20,85)(25,96,156,108)(26,93,157,105)(27,90,158,110)(28,95,159,107)(29,92,160,112)(30,89,153,109)(31,94,154,106)(32,91,155,111)(41,74,132,69)(42,79,133,66)(43,76,134,71)(44,73,135,68)(45,78,136,65)(46,75,129,70)(47,80,130,67)(48,77,131,72)(97,114,121,148)(98,119,122,145)(99,116,123,150)(100,113,124,147)(101,118,125,152)(102,115,126,149)(103,120,127,146)(104,117,128,151), (2,64)(3,141)(4,34)(6,60)(7,137)(8,38)(9,17)(10,87)(12,56)(13,21)(14,83)(16,52)(18,54)(20,81)(22,50)(24,85)(25,92)(26,153)(27,110)(29,96)(30,157)(31,106)(33,37)(35,63)(36,144)(39,59)(40,140)(41,65)(42,46)(43,76)(44,135)(45,69)(47,80)(48,131)(49,53)(51,88)(55,84)(57,61)(58,142)(62,138)(66,75)(67,130)(70,79)(71,134)(74,136)(78,132)(82,86)(89,93)(90,158)(91,111)(94,154)(95,107)(97,118)(98,126)(99,150)(101,114)(102,122)(103,146)(105,109)(108,160)(112,156)(113,147)(115,119)(116,123)(117,151)(120,127)(121,152)(125,148)(129,133)(145,149), (1,19,100,28,77)(2,29,20,78,101)(3,79,30,102,21)(4,103,80,22,31)(5,23,104,32,73)(6,25,24,74,97)(7,75,26,98,17)(8,99,76,18,27)(9,137,66,153,126)(10,154,138,127,67)(11,128,155,68,139)(12,69,121,140,156)(13,141,70,157,122)(14,158,142,123,71)(15,124,159,72,143)(16,65,125,144,160)(33,46,105,145,49)(34,146,47,50,106)(35,51,147,107,48)(36,108,52,41,148)(37,42,109,149,53)(38,150,43,54,110)(39,55,151,111,44)(40,112,56,45,152)(57,133,89,115,82)(58,116,134,83,90)(59,84,117,91,135)(60,92,85,136,118)(61,129,93,119,86)(62,120,130,87,94)(63,88,113,95,131)(64,96,81,132,114), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)>;

G:=Group( (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112)(113,117)(114,118)(115,119)(116,120)(121,125)(122,126)(123,127)(124,128)(129,133)(130,134)(131,135)(132,136)(137,141)(138,142)(139,143)(140,144)(145,149)(146,150)(147,151)(148,152)(153,157)(154,158)(155,159)(156,160), (1,63,143,35)(2,60,144,40)(3,57,137,37)(4,62,138,34)(5,59,139,39)(6,64,140,36)(7,61,141,33)(8,58,142,38)(9,53,21,82)(10,50,22,87)(11,55,23,84)(12,52,24,81)(13,49,17,86)(14,54,18,83)(15,51,19,88)(16,56,20,85)(25,96,156,108)(26,93,157,105)(27,90,158,110)(28,95,159,107)(29,92,160,112)(30,89,153,109)(31,94,154,106)(32,91,155,111)(41,74,132,69)(42,79,133,66)(43,76,134,71)(44,73,135,68)(45,78,136,65)(46,75,129,70)(47,80,130,67)(48,77,131,72)(97,114,121,148)(98,119,122,145)(99,116,123,150)(100,113,124,147)(101,118,125,152)(102,115,126,149)(103,120,127,146)(104,117,128,151), (2,64)(3,141)(4,34)(6,60)(7,137)(8,38)(9,17)(10,87)(12,56)(13,21)(14,83)(16,52)(18,54)(20,81)(22,50)(24,85)(25,92)(26,153)(27,110)(29,96)(30,157)(31,106)(33,37)(35,63)(36,144)(39,59)(40,140)(41,65)(42,46)(43,76)(44,135)(45,69)(47,80)(48,131)(49,53)(51,88)(55,84)(57,61)(58,142)(62,138)(66,75)(67,130)(70,79)(71,134)(74,136)(78,132)(82,86)(89,93)(90,158)(91,111)(94,154)(95,107)(97,118)(98,126)(99,150)(101,114)(102,122)(103,146)(105,109)(108,160)(112,156)(113,147)(115,119)(116,123)(117,151)(120,127)(121,152)(125,148)(129,133)(145,149), (1,19,100,28,77)(2,29,20,78,101)(3,79,30,102,21)(4,103,80,22,31)(5,23,104,32,73)(6,25,24,74,97)(7,75,26,98,17)(8,99,76,18,27)(9,137,66,153,126)(10,154,138,127,67)(11,128,155,68,139)(12,69,121,140,156)(13,141,70,157,122)(14,158,142,123,71)(15,124,159,72,143)(16,65,125,144,160)(33,46,105,145,49)(34,146,47,50,106)(35,51,147,107,48)(36,108,52,41,148)(37,42,109,149,53)(38,150,43,54,110)(39,55,151,111,44)(40,112,56,45,152)(57,133,89,115,82)(58,116,134,83,90)(59,84,117,91,135)(60,92,85,136,118)(61,129,93,119,86)(62,120,130,87,94)(63,88,113,95,131)(64,96,81,132,114), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160) );

G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64),(65,69),(66,70),(67,71),(68,72),(73,77),(74,78),(75,79),(76,80),(81,85),(82,86),(83,87),(84,88),(89,93),(90,94),(91,95),(92,96),(97,101),(98,102),(99,103),(100,104),(105,109),(106,110),(107,111),(108,112),(113,117),(114,118),(115,119),(116,120),(121,125),(122,126),(123,127),(124,128),(129,133),(130,134),(131,135),(132,136),(137,141),(138,142),(139,143),(140,144),(145,149),(146,150),(147,151),(148,152),(153,157),(154,158),(155,159),(156,160)], [(1,63,143,35),(2,60,144,40),(3,57,137,37),(4,62,138,34),(5,59,139,39),(6,64,140,36),(7,61,141,33),(8,58,142,38),(9,53,21,82),(10,50,22,87),(11,55,23,84),(12,52,24,81),(13,49,17,86),(14,54,18,83),(15,51,19,88),(16,56,20,85),(25,96,156,108),(26,93,157,105),(27,90,158,110),(28,95,159,107),(29,92,160,112),(30,89,153,109),(31,94,154,106),(32,91,155,111),(41,74,132,69),(42,79,133,66),(43,76,134,71),(44,73,135,68),(45,78,136,65),(46,75,129,70),(47,80,130,67),(48,77,131,72),(97,114,121,148),(98,119,122,145),(99,116,123,150),(100,113,124,147),(101,118,125,152),(102,115,126,149),(103,120,127,146),(104,117,128,151)], [(2,64),(3,141),(4,34),(6,60),(7,137),(8,38),(9,17),(10,87),(12,56),(13,21),(14,83),(16,52),(18,54),(20,81),(22,50),(24,85),(25,92),(26,153),(27,110),(29,96),(30,157),(31,106),(33,37),(35,63),(36,144),(39,59),(40,140),(41,65),(42,46),(43,76),(44,135),(45,69),(47,80),(48,131),(49,53),(51,88),(55,84),(57,61),(58,142),(62,138),(66,75),(67,130),(70,79),(71,134),(74,136),(78,132),(82,86),(89,93),(90,158),(91,111),(94,154),(95,107),(97,118),(98,126),(99,150),(101,114),(102,122),(103,146),(105,109),(108,160),(112,156),(113,147),(115,119),(116,123),(117,151),(120,127),(121,152),(125,148),(129,133),(145,149)], [(1,19,100,28,77),(2,29,20,78,101),(3,79,30,102,21),(4,103,80,22,31),(5,23,104,32,73),(6,25,24,74,97),(7,75,26,98,17),(8,99,76,18,27),(9,137,66,153,126),(10,154,138,127,67),(11,128,155,68,139),(12,69,121,140,156),(13,141,70,157,122),(14,158,142,123,71),(15,124,159,72,143),(16,65,125,144,160),(33,46,105,145,49),(34,146,47,50,106),(35,51,147,107,48),(36,108,52,41,148),(37,42,109,149,53),(38,150,43,54,110),(39,55,151,111,44),(40,112,56,45,152),(57,133,89,115,82),(58,116,134,83,90),(59,84,117,91,135),(60,92,85,136,118),(61,129,93,119,86),(62,120,130,87,94),(63,88,113,95,131),(64,96,81,132,114)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)]])

Matrix representation of (C2×D4).F5 in GL8(𝔽41)

10000000
01000000
004000000
000400000
00001000
00000100
00000010
00000001
,
040000000
10000000
0034300000
001270000
00001000
00000100
00000010
00000001
,
10000000
040000000
00100000
0036400000
00001000
00000100
00000010
00000001
,
10000000
01000000
00100000
00010000
000040404040
00001000
00000100
00000010
,
3636000000
536000000
0040140000
002410000
00001633414
000031113813
00002723020
000028183925

G:=sub<GL(8,GF(41))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,34,12,0,0,0,0,0,0,30,7,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,36,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,1,0,0,0,0,0,0,40,0,1,0,0,0,0,0,40,0,0,1,0,0,0,0,40,0,0,0],[36,5,0,0,0,0,0,0,36,36,0,0,0,0,0,0,0,0,40,24,0,0,0,0,0,0,14,1,0,0,0,0,0,0,0,0,16,31,27,28,0,0,0,0,3,11,2,18,0,0,0,0,34,38,30,39,0,0,0,0,14,13,20,25] >;

(C2×D4).F5 in GAP, Magma, Sage, TeX

(C_2\times D_4).F_5
% in TeX

G:=Group("(C2xD4).F5");
// GroupNames label

G:=SmallGroup(320,259);
// by ID

G=gap.SmallGroup(320,259);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,141,219,268,1571,570,136,6278,3156]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^5=1,e^4=a,e*b*e^-1=a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,c*d=d*c,e*c*e^-1=b^-1*c,e*d*e^-1=d^3>;
// generators/relations

Export

Character table of (C2×D4).F5 in TeX

׿
×
𝔽