Copied to
clipboard

G = D4xC10order 80 = 24·5

Direct product of C10 and D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: D4xC10, C23:C10, C20:4C22, C10.11C23, C4:(C2xC10), (C2xC20):6C2, (C2xC4):2C10, C22:(C2xC10), (C2xC10):2C22, (C22xC10):1C2, C2.1(C22xC10), SmallGroup(80,46)

Series: Derived Chief Lower central Upper central

C1C2 — D4xC10
C1C2C10C2xC10C5xD4 — D4xC10
C1C2 — D4xC10
C1C2xC10 — D4xC10

Generators and relations for D4xC10
 G = < a,b,c | a10=b4=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 70 in 54 conjugacy classes, 38 normal (10 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2xC4, D4, C23, C10, C10, C10, C2xD4, C20, C2xC10, C2xC10, C2xC10, C2xC20, C5xD4, C22xC10, D4xC10
Quotients: C1, C2, C22, C5, D4, C23, C10, C2xD4, C2xC10, C5xD4, C22xC10, D4xC10

Smallest permutation representation of D4xC10
On 40 points
Generators in S40
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)
(1 38 26 19)(2 39 27 20)(3 40 28 11)(4 31 29 12)(5 32 30 13)(6 33 21 14)(7 34 22 15)(8 35 23 16)(9 36 24 17)(10 37 25 18)
(1 33)(2 34)(3 35)(4 36)(5 37)(6 38)(7 39)(8 40)(9 31)(10 32)(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 21)(20 22)

G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,38,26,19)(2,39,27,20)(3,40,28,11)(4,31,29,12)(5,32,30,13)(6,33,21,14)(7,34,22,15)(8,35,23,16)(9,36,24,17)(10,37,25,18), (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,31)(10,32)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,21)(20,22)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,38,26,19)(2,39,27,20)(3,40,28,11)(4,31,29,12)(5,32,30,13)(6,33,21,14)(7,34,22,15)(8,35,23,16)(9,36,24,17)(10,37,25,18), (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,31)(10,32)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,21)(20,22) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40)], [(1,38,26,19),(2,39,27,20),(3,40,28,11),(4,31,29,12),(5,32,30,13),(6,33,21,14),(7,34,22,15),(8,35,23,16),(9,36,24,17),(10,37,25,18)], [(1,33),(2,34),(3,35),(4,36),(5,37),(6,38),(7,39),(8,40),(9,31),(10,32),(11,23),(12,24),(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,21),(20,22)]])

D4xC10 is a maximal subgroup of
D4:Dic5  C20.D4  C23:Dic5  D4.D10  C23.18D10  C20.17D4  C23:D10  C20:2D4  Dic5:D4  C20:D4  D4:6D10

50 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B5A5B5C5D10A···10L10M···10AB20A···20H
order1222222244555510···1010···1020···20
size111122222211111···12···22···2

50 irreducible representations

dim1111111122
type+++++
imageC1C2C2C2C5C10C10C10D4C5xD4
kernelD4xC10C2xC20C5xD4C22xC10C2xD4C2xC4D4C23C10C2
# reps11424416828

Matrix representation of D4xC10 in GL3(F41) generated by

4000
0180
0018
,
100
001
0400
,
100
0040
0400
G:=sub<GL(3,GF(41))| [40,0,0,0,18,0,0,0,18],[1,0,0,0,0,40,0,1,0],[1,0,0,0,0,40,0,40,0] >;

D4xC10 in GAP, Magma, Sage, TeX

D_4\times C_{10}
% in TeX

G:=Group("D4xC10");
// GroupNames label

G:=SmallGroup(80,46);
// by ID

G=gap.SmallGroup(80,46);
# by ID

G:=PCGroup([5,-2,-2,-2,-5,-2,421]);
// Polycyclic

G:=Group<a,b,c|a^10=b^4=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<