Copied to
clipboard

G = (C2×Q8).F5order 320 = 26·5

1st non-split extension by C2×Q8 of F5 acting via F5/C5=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C10.11C4≀C2, (C2×Q8).1F5, (C2×D20).6C4, (Q8×C10).1C4, C2.7(Q82F5), C2.6(C23.F5), C10.C422C2, (C2×Dic5).110D4, C20.23D4.2C2, C10.5(C4.D4), (C4×Dic5).5C22, C52(C42.C22), C22.63(C22⋊F5), (C2×C4).18(C2×F5), (C2×C20).15(C2×C4), (C2×C10).40(C22⋊C4), SmallGroup(320,265)

Series: Derived Chief Lower central Upper central

C1C2×C20 — (C2×Q8).F5
C1C5C10C2×C10C2×Dic5C4×Dic5C10.C42 — (C2×Q8).F5
C5C2×C10C2×C20 — (C2×Q8).F5
C1C22C2×C4C2×Q8

Generators and relations for (C2×Q8).F5
 G = < a,b,c,d,e | a2=b4=d5=1, c2=b2, e4=a, ebe-1=ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, cd=dc, ece-1=b-1c, ede-1=d3 >

Subgroups: 362 in 70 conjugacy classes, 22 normal (14 characteristic)
C1, C2, C2, C2, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C10, C42, C22⋊C4, C2×C8, C2×D4, C2×Q8, Dic5, C20, D10, C2×C10, C8⋊C4, C4.4D4, C5⋊C8, D20, C2×Dic5, C2×C20, C2×C20, C5×Q8, C22×D5, C42.C22, C4×Dic5, D10⋊C4, C2×C5⋊C8, C2×D20, Q8×C10, C10.C42, C20.23D4, (C2×Q8).F5
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, F5, C4.D4, C4≀C2, C2×F5, C42.C22, C22⋊F5, Q82F5, C23.F5, (C2×Q8).F5

Character table of (C2×Q8).F5

 class 12A2B2C2D4A4B4C4D4E4F58A8B8C8D8E8F8G8H10A10B10C20A20B20C20D20E20F
 size 111140481010101042020202020202020444888888
ρ111111111111111111111111111111    trivial
ρ21111-11-1111111-1-1-1-1111111-1-1-111-1    linear of order 2
ρ31111-11-111111-11111-1-1-1111-1-1-111-1    linear of order 2
ρ4111111111111-1-1-1-1-1-1-1-1111111111    linear of order 2
ρ5111111-1-1-1-1-11iii-i-i-i-ii111-1-1-111-1    linear of order 4
ρ61111-111-1-1-1-11i-i-iii-i-ii111111111    linear of order 4
ρ71111-111-1-1-1-11-iii-i-iii-i111111111    linear of order 4
ρ8111111-1-1-1-1-11-i-i-iiiii-i111-1-1-111-1    linear of order 4
ρ922220-202-2-22200000000222000-2-20    orthogonal lifted from D4
ρ1022220-20-222-2200000000222000-2-20    orthogonal lifted from D4
ρ112-2-220002i00-2i201+i-1-i1-i-1+i000-22-2000000    complex lifted from C4≀C2
ρ122-22-20000-2i2i02-1+i00001+i-1-i1-i2-2-2000000    complex lifted from C4≀C2
ρ132-22-200002i-2i021+i0000-1+i1-i-1-i2-2-2000000    complex lifted from C4≀C2
ρ142-22-200002i-2i02-1-i00001-i-1+i1+i2-2-2000000    complex lifted from C4≀C2
ρ152-2-22000-2i002i20-1+i1-i-1-i1+i000-22-2000000    complex lifted from C4≀C2
ρ162-22-20000-2i2i021-i0000-1-i1+i-1+i2-2-2000000    complex lifted from C4≀C2
ρ172-2-220002i00-2i20-1-i1+i-1+i1-i000-22-2000000    complex lifted from C4≀C2
ρ182-2-22000-2i002i201-i-1+i1+i-1-i000-22-2000000    complex lifted from C4≀C2
ρ1944440440000-100000000-1-1-1-1-1-1-1-1-1    orthogonal lifted from F5
ρ2044-4-40000000400000000-4-44000000    orthogonal lifted from C4.D4
ρ21444404-40000-100000000-1-1-1111-1-11    orthogonal lifted from C2×F5
ρ2244440-400000-100000000-1-1-1-5-55115    orthogonal lifted from C22⋊F5
ρ2344440-400000-100000000-1-1-155-511-5    orthogonal lifted from C22⋊F5
ρ2444-4-40000000-10000000011-154+2ζ52+153+2ζ5+154+2ζ53+1-5552+2ζ5+1    complex lifted from C23.F5
ρ2544-4-40000000-10000000011-153+2ζ5+154+2ζ52+152+2ζ5+1-5554+2ζ53+1    complex lifted from C23.F5
ρ2644-4-40000000-10000000011-152+2ζ5+154+2ζ53+154+2ζ52+15-553+2ζ5+1    complex lifted from C23.F5
ρ2744-4-40000000-10000000011-154+2ζ53+152+2ζ5+153+2ζ5+15-554+2ζ52+1    complex lifted from C23.F5
ρ288-88-80000000-200000000-222000000    orthogonal lifted from Q82F5
ρ298-8-880000000-2000000002-22000000    orthogonal lifted from Q82F5

Smallest permutation representation of (C2×Q8).F5
On 160 points
Generators in S160
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)(65 69)(66 70)(67 71)(68 72)(73 77)(74 78)(75 79)(76 80)(81 85)(82 86)(83 87)(84 88)(89 93)(90 94)(91 95)(92 96)(97 101)(98 102)(99 103)(100 104)(105 109)(106 110)(107 111)(108 112)(113 117)(114 118)(115 119)(116 120)(121 125)(122 126)(123 127)(124 128)(129 133)(130 134)(131 135)(132 136)(137 141)(138 142)(139 143)(140 144)(145 149)(146 150)(147 151)(148 152)(153 157)(154 158)(155 159)(156 160)
(1 63 143 35)(2 60 144 40)(3 57 137 37)(4 62 138 34)(5 59 139 39)(6 64 140 36)(7 61 141 33)(8 58 142 38)(9 53 21 82)(10 50 22 87)(11 55 23 84)(12 52 24 81)(13 49 17 86)(14 54 18 83)(15 51 19 88)(16 56 20 85)(25 96 156 108)(26 93 157 105)(27 90 158 110)(28 95 159 107)(29 92 160 112)(30 89 153 109)(31 94 154 106)(32 91 155 111)(41 74 132 69)(42 79 133 66)(43 76 134 71)(44 73 135 68)(45 78 136 65)(46 75 129 70)(47 80 130 67)(48 77 131 72)(97 114 121 148)(98 119 122 145)(99 116 123 150)(100 113 124 147)(101 118 125 152)(102 115 126 149)(103 120 127 146)(104 117 128 151)
(1 137 143 3)(2 38 144 58)(4 64 138 36)(5 141 139 7)(6 34 140 62)(8 60 142 40)(9 72 21 77)(10 41 22 132)(11 75 23 70)(12 130 24 47)(13 68 17 73)(14 45 18 136)(15 79 19 66)(16 134 20 43)(25 146 156 120)(26 104 157 128)(27 118 158 152)(28 126 159 102)(29 150 160 116)(30 100 153 124)(31 114 154 148)(32 122 155 98)(33 59 61 39)(35 37 63 57)(42 88 133 51)(44 49 135 86)(46 84 129 55)(48 53 131 82)(50 69 87 74)(52 80 81 67)(54 65 83 78)(56 76 85 71)(89 147 109 113)(90 101 110 125)(91 119 111 145)(92 123 112 99)(93 151 105 117)(94 97 106 121)(95 115 107 149)(96 127 108 103)
(1 19 100 28 77)(2 29 20 78 101)(3 79 30 102 21)(4 103 80 22 31)(5 23 104 32 73)(6 25 24 74 97)(7 75 26 98 17)(8 99 76 18 27)(9 137 66 153 126)(10 154 138 127 67)(11 128 155 68 139)(12 69 121 140 156)(13 141 70 157 122)(14 158 142 123 71)(15 124 159 72 143)(16 65 125 144 160)(33 46 105 145 49)(34 146 47 50 106)(35 51 147 107 48)(36 108 52 41 148)(37 42 109 149 53)(38 150 43 54 110)(39 55 151 111 44)(40 112 56 45 152)(57 133 89 115 82)(58 116 134 83 90)(59 84 117 91 135)(60 92 85 136 118)(61 129 93 119 86)(62 120 130 87 94)(63 88 113 95 131)(64 96 81 132 114)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)

G:=sub<Sym(160)| (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112)(113,117)(114,118)(115,119)(116,120)(121,125)(122,126)(123,127)(124,128)(129,133)(130,134)(131,135)(132,136)(137,141)(138,142)(139,143)(140,144)(145,149)(146,150)(147,151)(148,152)(153,157)(154,158)(155,159)(156,160), (1,63,143,35)(2,60,144,40)(3,57,137,37)(4,62,138,34)(5,59,139,39)(6,64,140,36)(7,61,141,33)(8,58,142,38)(9,53,21,82)(10,50,22,87)(11,55,23,84)(12,52,24,81)(13,49,17,86)(14,54,18,83)(15,51,19,88)(16,56,20,85)(25,96,156,108)(26,93,157,105)(27,90,158,110)(28,95,159,107)(29,92,160,112)(30,89,153,109)(31,94,154,106)(32,91,155,111)(41,74,132,69)(42,79,133,66)(43,76,134,71)(44,73,135,68)(45,78,136,65)(46,75,129,70)(47,80,130,67)(48,77,131,72)(97,114,121,148)(98,119,122,145)(99,116,123,150)(100,113,124,147)(101,118,125,152)(102,115,126,149)(103,120,127,146)(104,117,128,151), (1,137,143,3)(2,38,144,58)(4,64,138,36)(5,141,139,7)(6,34,140,62)(8,60,142,40)(9,72,21,77)(10,41,22,132)(11,75,23,70)(12,130,24,47)(13,68,17,73)(14,45,18,136)(15,79,19,66)(16,134,20,43)(25,146,156,120)(26,104,157,128)(27,118,158,152)(28,126,159,102)(29,150,160,116)(30,100,153,124)(31,114,154,148)(32,122,155,98)(33,59,61,39)(35,37,63,57)(42,88,133,51)(44,49,135,86)(46,84,129,55)(48,53,131,82)(50,69,87,74)(52,80,81,67)(54,65,83,78)(56,76,85,71)(89,147,109,113)(90,101,110,125)(91,119,111,145)(92,123,112,99)(93,151,105,117)(94,97,106,121)(95,115,107,149)(96,127,108,103), (1,19,100,28,77)(2,29,20,78,101)(3,79,30,102,21)(4,103,80,22,31)(5,23,104,32,73)(6,25,24,74,97)(7,75,26,98,17)(8,99,76,18,27)(9,137,66,153,126)(10,154,138,127,67)(11,128,155,68,139)(12,69,121,140,156)(13,141,70,157,122)(14,158,142,123,71)(15,124,159,72,143)(16,65,125,144,160)(33,46,105,145,49)(34,146,47,50,106)(35,51,147,107,48)(36,108,52,41,148)(37,42,109,149,53)(38,150,43,54,110)(39,55,151,111,44)(40,112,56,45,152)(57,133,89,115,82)(58,116,134,83,90)(59,84,117,91,135)(60,92,85,136,118)(61,129,93,119,86)(62,120,130,87,94)(63,88,113,95,131)(64,96,81,132,114), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)>;

G:=Group( (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112)(113,117)(114,118)(115,119)(116,120)(121,125)(122,126)(123,127)(124,128)(129,133)(130,134)(131,135)(132,136)(137,141)(138,142)(139,143)(140,144)(145,149)(146,150)(147,151)(148,152)(153,157)(154,158)(155,159)(156,160), (1,63,143,35)(2,60,144,40)(3,57,137,37)(4,62,138,34)(5,59,139,39)(6,64,140,36)(7,61,141,33)(8,58,142,38)(9,53,21,82)(10,50,22,87)(11,55,23,84)(12,52,24,81)(13,49,17,86)(14,54,18,83)(15,51,19,88)(16,56,20,85)(25,96,156,108)(26,93,157,105)(27,90,158,110)(28,95,159,107)(29,92,160,112)(30,89,153,109)(31,94,154,106)(32,91,155,111)(41,74,132,69)(42,79,133,66)(43,76,134,71)(44,73,135,68)(45,78,136,65)(46,75,129,70)(47,80,130,67)(48,77,131,72)(97,114,121,148)(98,119,122,145)(99,116,123,150)(100,113,124,147)(101,118,125,152)(102,115,126,149)(103,120,127,146)(104,117,128,151), (1,137,143,3)(2,38,144,58)(4,64,138,36)(5,141,139,7)(6,34,140,62)(8,60,142,40)(9,72,21,77)(10,41,22,132)(11,75,23,70)(12,130,24,47)(13,68,17,73)(14,45,18,136)(15,79,19,66)(16,134,20,43)(25,146,156,120)(26,104,157,128)(27,118,158,152)(28,126,159,102)(29,150,160,116)(30,100,153,124)(31,114,154,148)(32,122,155,98)(33,59,61,39)(35,37,63,57)(42,88,133,51)(44,49,135,86)(46,84,129,55)(48,53,131,82)(50,69,87,74)(52,80,81,67)(54,65,83,78)(56,76,85,71)(89,147,109,113)(90,101,110,125)(91,119,111,145)(92,123,112,99)(93,151,105,117)(94,97,106,121)(95,115,107,149)(96,127,108,103), (1,19,100,28,77)(2,29,20,78,101)(3,79,30,102,21)(4,103,80,22,31)(5,23,104,32,73)(6,25,24,74,97)(7,75,26,98,17)(8,99,76,18,27)(9,137,66,153,126)(10,154,138,127,67)(11,128,155,68,139)(12,69,121,140,156)(13,141,70,157,122)(14,158,142,123,71)(15,124,159,72,143)(16,65,125,144,160)(33,46,105,145,49)(34,146,47,50,106)(35,51,147,107,48)(36,108,52,41,148)(37,42,109,149,53)(38,150,43,54,110)(39,55,151,111,44)(40,112,56,45,152)(57,133,89,115,82)(58,116,134,83,90)(59,84,117,91,135)(60,92,85,136,118)(61,129,93,119,86)(62,120,130,87,94)(63,88,113,95,131)(64,96,81,132,114), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160) );

G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64),(65,69),(66,70),(67,71),(68,72),(73,77),(74,78),(75,79),(76,80),(81,85),(82,86),(83,87),(84,88),(89,93),(90,94),(91,95),(92,96),(97,101),(98,102),(99,103),(100,104),(105,109),(106,110),(107,111),(108,112),(113,117),(114,118),(115,119),(116,120),(121,125),(122,126),(123,127),(124,128),(129,133),(130,134),(131,135),(132,136),(137,141),(138,142),(139,143),(140,144),(145,149),(146,150),(147,151),(148,152),(153,157),(154,158),(155,159),(156,160)], [(1,63,143,35),(2,60,144,40),(3,57,137,37),(4,62,138,34),(5,59,139,39),(6,64,140,36),(7,61,141,33),(8,58,142,38),(9,53,21,82),(10,50,22,87),(11,55,23,84),(12,52,24,81),(13,49,17,86),(14,54,18,83),(15,51,19,88),(16,56,20,85),(25,96,156,108),(26,93,157,105),(27,90,158,110),(28,95,159,107),(29,92,160,112),(30,89,153,109),(31,94,154,106),(32,91,155,111),(41,74,132,69),(42,79,133,66),(43,76,134,71),(44,73,135,68),(45,78,136,65),(46,75,129,70),(47,80,130,67),(48,77,131,72),(97,114,121,148),(98,119,122,145),(99,116,123,150),(100,113,124,147),(101,118,125,152),(102,115,126,149),(103,120,127,146),(104,117,128,151)], [(1,137,143,3),(2,38,144,58),(4,64,138,36),(5,141,139,7),(6,34,140,62),(8,60,142,40),(9,72,21,77),(10,41,22,132),(11,75,23,70),(12,130,24,47),(13,68,17,73),(14,45,18,136),(15,79,19,66),(16,134,20,43),(25,146,156,120),(26,104,157,128),(27,118,158,152),(28,126,159,102),(29,150,160,116),(30,100,153,124),(31,114,154,148),(32,122,155,98),(33,59,61,39),(35,37,63,57),(42,88,133,51),(44,49,135,86),(46,84,129,55),(48,53,131,82),(50,69,87,74),(52,80,81,67),(54,65,83,78),(56,76,85,71),(89,147,109,113),(90,101,110,125),(91,119,111,145),(92,123,112,99),(93,151,105,117),(94,97,106,121),(95,115,107,149),(96,127,108,103)], [(1,19,100,28,77),(2,29,20,78,101),(3,79,30,102,21),(4,103,80,22,31),(5,23,104,32,73),(6,25,24,74,97),(7,75,26,98,17),(8,99,76,18,27),(9,137,66,153,126),(10,154,138,127,67),(11,128,155,68,139),(12,69,121,140,156),(13,141,70,157,122),(14,158,142,123,71),(15,124,159,72,143),(16,65,125,144,160),(33,46,105,145,49),(34,146,47,50,106),(35,51,147,107,48),(36,108,52,41,148),(37,42,109,149,53),(38,150,43,54,110),(39,55,151,111,44),(40,112,56,45,152),(57,133,89,115,82),(58,116,134,83,90),(59,84,117,91,135),(60,92,85,136,118),(61,129,93,119,86),(62,120,130,87,94),(63,88,113,95,131),(64,96,81,132,114)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)]])

Matrix representation of (C2×Q8).F5 in GL8(𝔽41)

400000000
040000000
00100000
00010000
00001000
00000100
00000010
00000001
,
01000000
400000000
000400000
00100000
000040000
000004000
000000400
000000040
,
320000000
09000000
000320000
003200000
0000193038
0000022338
0000383220
0000380319
,
10000000
01000000
00100000
00010000
000000040
000010040
000001040
000000140
,
365000000
55000000
0037370000
004370000
0000343446
00003840840
000013313
0000353777

G:=sub<GL(8,GF(41))| [40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[32,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,19,0,38,38,0,0,0,0,3,22,3,0,0,0,0,0,0,3,22,3,0,0,0,0,38,38,0,19],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,40,40,40,40],[36,5,0,0,0,0,0,0,5,5,0,0,0,0,0,0,0,0,37,4,0,0,0,0,0,0,37,37,0,0,0,0,0,0,0,0,34,38,1,35,0,0,0,0,34,40,33,37,0,0,0,0,4,8,1,7,0,0,0,0,6,40,3,7] >;

(C2×Q8).F5 in GAP, Magma, Sage, TeX

(C_2\times Q_8).F_5
% in TeX

G:=Group("(C2xQ8).F5");
// GroupNames label

G:=SmallGroup(320,265);
// by ID

G=gap.SmallGroup(320,265);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,141,232,219,268,1571,570,136,6278,3156]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=d^5=1,c^2=b^2,e^4=a,e*b*e^-1=a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,c*d=d*c,e*c*e^-1=b^-1*c,e*d*e^-1=d^3>;
// generators/relations

Export

Character table of (C2×Q8).F5 in TeX

׿
×
𝔽