Copied to
clipboard

G = C5×M4(2)⋊4C4order 320 = 26·5

Direct product of C5 and M4(2)⋊4C4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C5×M4(2)⋊4C4, M4(2)⋊4C20, (C2×C8)⋊2C20, (C2×C40)⋊14C4, C20.85(C4⋊C4), (C2×C20).38Q8, (C2×C20).510D4, C22⋊C4.1C20, C23.7(C2×C20), C22.3(C4×C20), (C5×M4(2))⋊16C4, (C2×C10).32C42, C42⋊C2.3C10, (C2×M4(2)).9C10, C20.153(C22⋊C4), (C10×M4(2)).21C2, (C22×C20).389C22, C10.47(C2.C42), C4.5(C5×C4⋊C4), (C2×C4).3(C5×Q8), C22.6(C5×C4⋊C4), (C2×C4).15(C2×C20), (C2×C4).115(C5×D4), C4.27(C5×C22⋊C4), (C2×C10).51(C4⋊C4), (C2×C20).499(C2×C4), (C5×C22⋊C4).10C4, C22.9(C5×C22⋊C4), (C22×C4).19(C2×C10), (C22×C10).86(C2×C4), C2.9(C5×C2.C42), (C5×C42⋊C2).17C2, (C2×C10).136(C22⋊C4), SmallGroup(320,149)

Series: Derived Chief Lower central Upper central

C1C22 — C5×M4(2)⋊4C4
C1C2C4C2×C4C22×C4C22×C20C5×C42⋊C2 — C5×M4(2)⋊4C4
C1C2C22 — C5×M4(2)⋊4C4
C1C20C22×C20 — C5×M4(2)⋊4C4

Generators and relations for C5×M4(2)⋊4C4
 G = < a,b,c,d | a5=b8=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b5, dbd-1=bc, dcd-1=b4c >

Subgroups: 138 in 90 conjugacy classes, 54 normal (42 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), M4(2), C22×C4, C20, C20, C2×C10, C2×C10, C42⋊C2, C2×M4(2), C40, C2×C20, C2×C20, C22×C10, M4(2)⋊4C4, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×C40, C2×C40, C5×M4(2), C5×M4(2), C22×C20, C5×C42⋊C2, C10×M4(2), C5×M4(2)⋊4C4
Quotients: C1, C2, C4, C22, C5, C2×C4, D4, Q8, C10, C42, C22⋊C4, C4⋊C4, C20, C2×C10, C2.C42, C2×C20, C5×D4, C5×Q8, M4(2)⋊4C4, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C5×C2.C42, C5×M4(2)⋊4C4

Smallest permutation representation of C5×M4(2)⋊4C4
On 80 points
Generators in S80
(1 62 19 54 11)(2 63 20 55 12)(3 64 21 56 13)(4 57 22 49 14)(5 58 23 50 15)(6 59 24 51 16)(7 60 17 52 9)(8 61 18 53 10)(25 42 76 33 68)(26 43 77 34 69)(27 44 78 35 70)(28 45 79 36 71)(29 46 80 37 72)(30 47 73 38 65)(31 48 74 39 66)(32 41 75 40 67)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(1 30)(2 27)(3 32)(4 29)(5 26)(6 31)(7 28)(8 25)(9 71)(10 68)(11 65)(12 70)(13 67)(14 72)(15 69)(16 66)(17 79)(18 76)(19 73)(20 78)(21 75)(22 80)(23 77)(24 74)(33 53)(34 50)(35 55)(36 52)(37 49)(38 54)(39 51)(40 56)(41 64)(42 61)(43 58)(44 63)(45 60)(46 57)(47 62)(48 59)
(2 31 6 27)(3 7)(4 29 8 25)(9 13)(10 68 14 72)(12 66 16 70)(17 21)(18 76 22 80)(20 74 24 78)(26 30)(33 49 37 53)(34 38)(35 55 39 51)(42 57 46 61)(43 47)(44 63 48 59)(52 56)(60 64)(65 69)(73 77)

G:=sub<Sym(80)| (1,62,19,54,11)(2,63,20,55,12)(3,64,21,56,13)(4,57,22,49,14)(5,58,23,50,15)(6,59,24,51,16)(7,60,17,52,9)(8,61,18,53,10)(25,42,76,33,68)(26,43,77,34,69)(27,44,78,35,70)(28,45,79,36,71)(29,46,80,37,72)(30,47,73,38,65)(31,48,74,39,66)(32,41,75,40,67), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,30)(2,27)(3,32)(4,29)(5,26)(6,31)(7,28)(8,25)(9,71)(10,68)(11,65)(12,70)(13,67)(14,72)(15,69)(16,66)(17,79)(18,76)(19,73)(20,78)(21,75)(22,80)(23,77)(24,74)(33,53)(34,50)(35,55)(36,52)(37,49)(38,54)(39,51)(40,56)(41,64)(42,61)(43,58)(44,63)(45,60)(46,57)(47,62)(48,59), (2,31,6,27)(3,7)(4,29,8,25)(9,13)(10,68,14,72)(12,66,16,70)(17,21)(18,76,22,80)(20,74,24,78)(26,30)(33,49,37,53)(34,38)(35,55,39,51)(42,57,46,61)(43,47)(44,63,48,59)(52,56)(60,64)(65,69)(73,77)>;

G:=Group( (1,62,19,54,11)(2,63,20,55,12)(3,64,21,56,13)(4,57,22,49,14)(5,58,23,50,15)(6,59,24,51,16)(7,60,17,52,9)(8,61,18,53,10)(25,42,76,33,68)(26,43,77,34,69)(27,44,78,35,70)(28,45,79,36,71)(29,46,80,37,72)(30,47,73,38,65)(31,48,74,39,66)(32,41,75,40,67), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,30)(2,27)(3,32)(4,29)(5,26)(6,31)(7,28)(8,25)(9,71)(10,68)(11,65)(12,70)(13,67)(14,72)(15,69)(16,66)(17,79)(18,76)(19,73)(20,78)(21,75)(22,80)(23,77)(24,74)(33,53)(34,50)(35,55)(36,52)(37,49)(38,54)(39,51)(40,56)(41,64)(42,61)(43,58)(44,63)(45,60)(46,57)(47,62)(48,59), (2,31,6,27)(3,7)(4,29,8,25)(9,13)(10,68,14,72)(12,66,16,70)(17,21)(18,76,22,80)(20,74,24,78)(26,30)(33,49,37,53)(34,38)(35,55,39,51)(42,57,46,61)(43,47)(44,63,48,59)(52,56)(60,64)(65,69)(73,77) );

G=PermutationGroup([[(1,62,19,54,11),(2,63,20,55,12),(3,64,21,56,13),(4,57,22,49,14),(5,58,23,50,15),(6,59,24,51,16),(7,60,17,52,9),(8,61,18,53,10),(25,42,76,33,68),(26,43,77,34,69),(27,44,78,35,70),(28,45,79,36,71),(29,46,80,37,72),(30,47,73,38,65),(31,48,74,39,66),(32,41,75,40,67)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(1,30),(2,27),(3,32),(4,29),(5,26),(6,31),(7,28),(8,25),(9,71),(10,68),(11,65),(12,70),(13,67),(14,72),(15,69),(16,66),(17,79),(18,76),(19,73),(20,78),(21,75),(22,80),(23,77),(24,74),(33,53),(34,50),(35,55),(36,52),(37,49),(38,54),(39,51),(40,56),(41,64),(42,61),(43,58),(44,63),(45,60),(46,57),(47,62),(48,59)], [(2,31,6,27),(3,7),(4,29,8,25),(9,13),(10,68,14,72),(12,66,16,70),(17,21),(18,76,22,80),(20,74,24,78),(26,30),(33,49,37,53),(34,38),(35,55,39,51),(42,57,46,61),(43,47),(44,63,48,59),(52,56),(60,64),(65,69),(73,77)]])

110 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G4H4I5A5B5C5D8A···8H10A10B10C10D10E···10P20A···20H20I···20T20U···20AJ40A···40AF
order1222244444444455558···81010101010···1020···2020···2020···2040···40
size1122211222444411114···411112···21···12···24···44···4

110 irreducible representations

dim111111111111222244
type++++-
imageC1C2C2C4C4C4C5C10C10C20C20C20D4Q8C5×D4C5×Q8M4(2)⋊4C4C5×M4(2)⋊4C4
kernelC5×M4(2)⋊4C4C5×C42⋊C2C10×M4(2)C5×C22⋊C4C2×C40C5×M4(2)M4(2)⋊4C4C42⋊C2C2×M4(2)C22⋊C4C2×C8M4(2)C2×C20C2×C20C2×C4C2×C4C5C1
# reps1124444481616163112428

Matrix representation of C5×M4(2)⋊4C4 in GL4(𝔽41) generated by

18000
01800
00180
00018
,
00320
0009
0100
40000
,
0100
1000
0001
0010
,
1000
04000
00040
0010
G:=sub<GL(4,GF(41))| [18,0,0,0,0,18,0,0,0,0,18,0,0,0,0,18],[0,0,0,40,0,0,1,0,32,0,0,0,0,9,0,0],[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0],[1,0,0,0,0,40,0,0,0,0,0,1,0,0,40,0] >;

C5×M4(2)⋊4C4 in GAP, Magma, Sage, TeX

C_5\times M_4(2)\rtimes_4C_4
% in TeX

G:=Group("C5xM4(2):4C4");
// GroupNames label

G:=SmallGroup(320,149);
// by ID

G=gap.SmallGroup(320,149);
# by ID

G:=PCGroup([7,-2,-2,-5,-2,-2,-2,-2,280,309,568,5043,3511,124]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^8=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^5,d*b*d^-1=b*c,d*c*d^-1=b^4*c>;
// generators/relations

׿
×
𝔽