Extensions 1→N→G→Q→1 with N=C5xD4 and Q=C8

Direct product G=NxQ with N=C5xD4 and Q=C8
dρLabelID
D4xC40160D4xC40320,935

Semidirect products G=N:Q with N=C5xD4 and Q=C8
extensionφ:Q→Out NdρLabelID
(C5xD4):1C8 = Dic5.23D8φ: C8/C2C4 ⊆ Out C5xD4160(C5xD4):1C8320,262
(C5xD4):2C8 = D4xC5:C8φ: C8/C2C4 ⊆ Out C5xD4160(C5xD4):2C8320,1110
(C5xD4):3C8 = C20.57D8φ: C8/C4C2 ⊆ Out C5xD4160(C5xD4):3C8320,92
(C5xD4):4C8 = D4xC5:2C8φ: C8/C4C2 ⊆ Out C5xD4160(C5xD4):4C8320,637
(C5xD4):5C8 = C5xD4:C8φ: C8/C4C2 ⊆ Out C5xD4160(C5xD4):5C8320,130

Non-split extensions G=N.Q with N=C5xD4 and Q=C8
extensionφ:Q→Out NdρLabelID
(C5xD4).1C8 = D4.(C5:C8)φ: C8/C2C4 ⊆ Out C5xD41608(C5xD4).1C8320,270
(C5xD4).2C8 = C5:C16.C22φ: C8/C2C4 ⊆ Out C5xD41608(C5xD4).2C8320,1129
(C5xD4).3C8 = C40.92D4φ: C8/C4C2 ⊆ Out C5xD41604(C5xD4).3C8320,119
(C5xD4).4C8 = C40.70C23φ: C8/C4C2 ⊆ Out C5xD41604(C5xD4).4C8320,767
(C5xD4).5C8 = C5xD4.C8φ: C8/C4C2 ⊆ Out C5xD41602(C5xD4).5C8320,155
(C5xD4).6C8 = C5xD4oC16φ: trivial image1602(C5xD4).6C8320,1005

׿
x
:
Z
F
o
wr
Q
<