Extensions 1→N→G→Q→1 with N=C5×D4 and Q=C8

Direct product G=N×Q with N=C5×D4 and Q=C8
dρLabelID
D4×C40160D4xC40320,935

Semidirect products G=N:Q with N=C5×D4 and Q=C8
extensionφ:Q→Out NdρLabelID
(C5×D4)⋊1C8 = Dic5.23D8φ: C8/C2C4 ⊆ Out C5×D4160(C5xD4):1C8320,262
(C5×D4)⋊2C8 = D4×C5⋊C8φ: C8/C2C4 ⊆ Out C5×D4160(C5xD4):2C8320,1110
(C5×D4)⋊3C8 = C20.57D8φ: C8/C4C2 ⊆ Out C5×D4160(C5xD4):3C8320,92
(C5×D4)⋊4C8 = D4×C52C8φ: C8/C4C2 ⊆ Out C5×D4160(C5xD4):4C8320,637
(C5×D4)⋊5C8 = C5×D4⋊C8φ: C8/C4C2 ⊆ Out C5×D4160(C5xD4):5C8320,130

Non-split extensions G=N.Q with N=C5×D4 and Q=C8
extensionφ:Q→Out NdρLabelID
(C5×D4).1C8 = D4.(C5⋊C8)φ: C8/C2C4 ⊆ Out C5×D41608(C5xD4).1C8320,270
(C5×D4).2C8 = C5⋊C16.C22φ: C8/C2C4 ⊆ Out C5×D41608(C5xD4).2C8320,1129
(C5×D4).3C8 = C40.92D4φ: C8/C4C2 ⊆ Out C5×D41604(C5xD4).3C8320,119
(C5×D4).4C8 = C40.70C23φ: C8/C4C2 ⊆ Out C5×D41604(C5xD4).4C8320,767
(C5×D4).5C8 = C5×D4.C8φ: C8/C4C2 ⊆ Out C5×D41602(C5xD4).5C8320,155
(C5×D4).6C8 = C5×D4○C16φ: trivial image1602(C5xD4).6C8320,1005

׿
×
𝔽