Copied to
clipboard

G = D4.(C5⋊C8)  order 320 = 26·5

The non-split extension by D4 of C5⋊C8 acting via C5⋊C8/Dic5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.(C5⋊C8), Q8.(C5⋊C8), C20.6(C2×C8), C52(D4.C8), (C5×D4).1C8, C4○D4.1F5, (C5×Q8).1C8, C52C8.22D4, C20.C82C2, C4.Dic5.2C4, (C2×C10).2M4(2), D4.Dic5.2C2, C4.44(C22⋊F5), C10.14(C22⋊C8), C20.42(C22⋊C4), C2.7(C23.2F5), C22.1(C22.F5), C4.3(C2×C5⋊C8), (C2×C5⋊C16)⋊2C2, (C5×C4○D4).1C4, (C2×C4).73(C2×F5), (C2×C20).41(C2×C4), (C2×C52C8).187C22, SmallGroup(320,270)

Series: Derived Chief Lower central Upper central

C1C20 — D4.(C5⋊C8)
C1C5C10C20C52C8C2×C52C8C20.C8 — D4.(C5⋊C8)
C5C10C20 — D4.(C5⋊C8)
C1C4C2×C4C4○D4

Generators and relations for D4.(C5⋊C8)
 G = < a,b,c,d | a4=b2=c5=1, d8=a2, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=c3 >

2C2
4C2
2C4
2C22
2C10
4C10
2D4
2C2×C4
5C8
5C8
10C8
2C2×C10
2C20
5M4(2)
5C2×C8
10C16
10C16
10C2×C8
10M4(2)
2C52C8
2C5×D4
2C2×C20
5C8○D4
5C2×C16
5M5(2)
2C5⋊C16
2C5⋊C16
2C2×C52C8
2C4.Dic5
5D4.C8

Smallest permutation representation of D4.(C5⋊C8)
On 160 points
Generators in S160
(1 26 9 18)(2 19 10 27)(3 28 11 20)(4 21 12 29)(5 30 13 22)(6 23 14 31)(7 32 15 24)(8 25 16 17)(33 125 41 117)(34 118 42 126)(35 127 43 119)(36 120 44 128)(37 113 45 121)(38 122 46 114)(39 115 47 123)(40 124 48 116)(49 103 57 111)(50 112 58 104)(51 105 59 97)(52 98 60 106)(53 107 61 99)(54 100 62 108)(55 109 63 101)(56 102 64 110)(65 130 73 138)(66 139 74 131)(67 132 75 140)(68 141 76 133)(69 134 77 142)(70 143 78 135)(71 136 79 144)(72 129 80 137)(81 159 89 151)(82 152 90 160)(83 145 91 153)(84 154 92 146)(85 147 93 155)(86 156 94 148)(87 149 95 157)(88 158 96 150)
(1 18)(2 10)(3 20)(4 12)(5 22)(6 14)(7 24)(8 16)(9 26)(11 28)(13 30)(15 32)(33 125)(35 127)(37 113)(39 115)(41 117)(43 119)(45 121)(47 123)(49 103)(51 105)(53 107)(55 109)(57 111)(59 97)(61 99)(63 101)(65 130)(67 132)(69 134)(71 136)(73 138)(75 140)(77 142)(79 144)(81 151)(82 90)(83 153)(84 92)(85 155)(86 94)(87 157)(88 96)(89 159)(91 145)(93 147)(95 149)(98 106)(100 108)(102 110)(104 112)(114 122)(116 124)(118 126)(120 128)(129 137)(131 139)(133 141)(135 143)
(1 101 87 113 136)(2 114 102 137 88)(3 138 115 89 103)(4 90 139 104 116)(5 105 91 117 140)(6 118 106 141 92)(7 142 119 93 107)(8 94 143 108 120)(9 109 95 121 144)(10 122 110 129 96)(11 130 123 81 111)(12 82 131 112 124)(13 97 83 125 132)(14 126 98 133 84)(15 134 127 85 99)(16 86 135 100 128)(17 156 70 62 36)(18 63 157 37 71)(19 38 64 72 158)(20 73 39 159 49)(21 160 74 50 40)(22 51 145 41 75)(23 42 52 76 146)(24 77 43 147 53)(25 148 78 54 44)(26 55 149 45 79)(27 46 56 80 150)(28 65 47 151 57)(29 152 66 58 48)(30 59 153 33 67)(31 34 60 68 154)(32 69 35 155 61)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)

G:=sub<Sym(160)| (1,26,9,18)(2,19,10,27)(3,28,11,20)(4,21,12,29)(5,30,13,22)(6,23,14,31)(7,32,15,24)(8,25,16,17)(33,125,41,117)(34,118,42,126)(35,127,43,119)(36,120,44,128)(37,113,45,121)(38,122,46,114)(39,115,47,123)(40,124,48,116)(49,103,57,111)(50,112,58,104)(51,105,59,97)(52,98,60,106)(53,107,61,99)(54,100,62,108)(55,109,63,101)(56,102,64,110)(65,130,73,138)(66,139,74,131)(67,132,75,140)(68,141,76,133)(69,134,77,142)(70,143,78,135)(71,136,79,144)(72,129,80,137)(81,159,89,151)(82,152,90,160)(83,145,91,153)(84,154,92,146)(85,147,93,155)(86,156,94,148)(87,149,95,157)(88,158,96,150), (1,18)(2,10)(3,20)(4,12)(5,22)(6,14)(7,24)(8,16)(9,26)(11,28)(13,30)(15,32)(33,125)(35,127)(37,113)(39,115)(41,117)(43,119)(45,121)(47,123)(49,103)(51,105)(53,107)(55,109)(57,111)(59,97)(61,99)(63,101)(65,130)(67,132)(69,134)(71,136)(73,138)(75,140)(77,142)(79,144)(81,151)(82,90)(83,153)(84,92)(85,155)(86,94)(87,157)(88,96)(89,159)(91,145)(93,147)(95,149)(98,106)(100,108)(102,110)(104,112)(114,122)(116,124)(118,126)(120,128)(129,137)(131,139)(133,141)(135,143), (1,101,87,113,136)(2,114,102,137,88)(3,138,115,89,103)(4,90,139,104,116)(5,105,91,117,140)(6,118,106,141,92)(7,142,119,93,107)(8,94,143,108,120)(9,109,95,121,144)(10,122,110,129,96)(11,130,123,81,111)(12,82,131,112,124)(13,97,83,125,132)(14,126,98,133,84)(15,134,127,85,99)(16,86,135,100,128)(17,156,70,62,36)(18,63,157,37,71)(19,38,64,72,158)(20,73,39,159,49)(21,160,74,50,40)(22,51,145,41,75)(23,42,52,76,146)(24,77,43,147,53)(25,148,78,54,44)(26,55,149,45,79)(27,46,56,80,150)(28,65,47,151,57)(29,152,66,58,48)(30,59,153,33,67)(31,34,60,68,154)(32,69,35,155,61), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)>;

G:=Group( (1,26,9,18)(2,19,10,27)(3,28,11,20)(4,21,12,29)(5,30,13,22)(6,23,14,31)(7,32,15,24)(8,25,16,17)(33,125,41,117)(34,118,42,126)(35,127,43,119)(36,120,44,128)(37,113,45,121)(38,122,46,114)(39,115,47,123)(40,124,48,116)(49,103,57,111)(50,112,58,104)(51,105,59,97)(52,98,60,106)(53,107,61,99)(54,100,62,108)(55,109,63,101)(56,102,64,110)(65,130,73,138)(66,139,74,131)(67,132,75,140)(68,141,76,133)(69,134,77,142)(70,143,78,135)(71,136,79,144)(72,129,80,137)(81,159,89,151)(82,152,90,160)(83,145,91,153)(84,154,92,146)(85,147,93,155)(86,156,94,148)(87,149,95,157)(88,158,96,150), (1,18)(2,10)(3,20)(4,12)(5,22)(6,14)(7,24)(8,16)(9,26)(11,28)(13,30)(15,32)(33,125)(35,127)(37,113)(39,115)(41,117)(43,119)(45,121)(47,123)(49,103)(51,105)(53,107)(55,109)(57,111)(59,97)(61,99)(63,101)(65,130)(67,132)(69,134)(71,136)(73,138)(75,140)(77,142)(79,144)(81,151)(82,90)(83,153)(84,92)(85,155)(86,94)(87,157)(88,96)(89,159)(91,145)(93,147)(95,149)(98,106)(100,108)(102,110)(104,112)(114,122)(116,124)(118,126)(120,128)(129,137)(131,139)(133,141)(135,143), (1,101,87,113,136)(2,114,102,137,88)(3,138,115,89,103)(4,90,139,104,116)(5,105,91,117,140)(6,118,106,141,92)(7,142,119,93,107)(8,94,143,108,120)(9,109,95,121,144)(10,122,110,129,96)(11,130,123,81,111)(12,82,131,112,124)(13,97,83,125,132)(14,126,98,133,84)(15,134,127,85,99)(16,86,135,100,128)(17,156,70,62,36)(18,63,157,37,71)(19,38,64,72,158)(20,73,39,159,49)(21,160,74,50,40)(22,51,145,41,75)(23,42,52,76,146)(24,77,43,147,53)(25,148,78,54,44)(26,55,149,45,79)(27,46,56,80,150)(28,65,47,151,57)(29,152,66,58,48)(30,59,153,33,67)(31,34,60,68,154)(32,69,35,155,61), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160) );

G=PermutationGroup([[(1,26,9,18),(2,19,10,27),(3,28,11,20),(4,21,12,29),(5,30,13,22),(6,23,14,31),(7,32,15,24),(8,25,16,17),(33,125,41,117),(34,118,42,126),(35,127,43,119),(36,120,44,128),(37,113,45,121),(38,122,46,114),(39,115,47,123),(40,124,48,116),(49,103,57,111),(50,112,58,104),(51,105,59,97),(52,98,60,106),(53,107,61,99),(54,100,62,108),(55,109,63,101),(56,102,64,110),(65,130,73,138),(66,139,74,131),(67,132,75,140),(68,141,76,133),(69,134,77,142),(70,143,78,135),(71,136,79,144),(72,129,80,137),(81,159,89,151),(82,152,90,160),(83,145,91,153),(84,154,92,146),(85,147,93,155),(86,156,94,148),(87,149,95,157),(88,158,96,150)], [(1,18),(2,10),(3,20),(4,12),(5,22),(6,14),(7,24),(8,16),(9,26),(11,28),(13,30),(15,32),(33,125),(35,127),(37,113),(39,115),(41,117),(43,119),(45,121),(47,123),(49,103),(51,105),(53,107),(55,109),(57,111),(59,97),(61,99),(63,101),(65,130),(67,132),(69,134),(71,136),(73,138),(75,140),(77,142),(79,144),(81,151),(82,90),(83,153),(84,92),(85,155),(86,94),(87,157),(88,96),(89,159),(91,145),(93,147),(95,149),(98,106),(100,108),(102,110),(104,112),(114,122),(116,124),(118,126),(120,128),(129,137),(131,139),(133,141),(135,143)], [(1,101,87,113,136),(2,114,102,137,88),(3,138,115,89,103),(4,90,139,104,116),(5,105,91,117,140),(6,118,106,141,92),(7,142,119,93,107),(8,94,143,108,120),(9,109,95,121,144),(10,122,110,129,96),(11,130,123,81,111),(12,82,131,112,124),(13,97,83,125,132),(14,126,98,133,84),(15,134,127,85,99),(16,86,135,100,128),(17,156,70,62,36),(18,63,157,37,71),(19,38,64,72,158),(20,73,39,159,49),(21,160,74,50,40),(22,51,145,41,75),(23,42,52,76,146),(24,77,43,147,53),(25,148,78,54,44),(26,55,149,45,79),(27,46,56,80,150),(28,65,47,151,57),(29,152,66,58,48),(30,59,153,33,67),(31,34,60,68,154),(32,69,35,155,61)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)]])

38 conjugacy classes

class 1 2A2B2C4A4B4C4D 5 8A8B8C8D8E8F8G8H10A10B10C10D16A···16H16I16J16K16L20A20B20C20D20E
order122244445888888881010101016···16161616162020202020
size112411244555510102020488810···102020202044888

38 irreducible representations

dim111111112224444448
type+++++++--+-
imageC1C2C2C2C4C4C8C8D4M4(2)D4.C8F5C2×F5C5⋊C8C5⋊C8C22⋊F5C22.F5D4.(C5⋊C8)
kernelD4.(C5⋊C8)C2×C5⋊C16C20.C8D4.Dic5C4.Dic5C5×C4○D4C5×D4C5×Q8C52C8C2×C10C5C4○D4C2×C4D4Q8C4C22C1
# reps111122442281111222

Matrix representation of D4.(C5⋊C8) in GL6(𝔽241)

010000
24000000
001000
000100
000010
000001
,
010000
100000
001000
000100
000010
000001
,
100000
010000
00000240
00100240
00010240
00001240
,
181600000
60600000
00220822667
00514911346
009212819572
0017415421159

G:=sub<GL(6,GF(241))| [0,240,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,240,240,240,240],[181,60,0,0,0,0,60,60,0,0,0,0,0,0,220,5,92,174,0,0,82,149,128,154,0,0,26,113,195,21,0,0,67,46,72,159] >;

D4.(C5⋊C8) in GAP, Magma, Sage, TeX

D_4.(C_5\rtimes C_8)
% in TeX

G:=Group("D4.(C5:C8)");
// GroupNames label

G:=SmallGroup(320,270);
// by ID

G=gap.SmallGroup(320,270);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,141,100,1123,570,136,102,6278,3156]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^5=1,d^8=a^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=c^3>;
// generators/relations

Export

Subgroup lattice of D4.(C5⋊C8) in TeX

׿
×
𝔽