Extensions 1→N→G→Q→1 with N=C2×D4 and Q=C20

Direct product G=N×Q with N=C2×D4 and Q=C20
dρLabelID
D4×C2×C20160D4xC2xC20320,1517

Semidirect products G=N:Q with N=C2×D4 and Q=C20
extensionφ:Q→Out NdρLabelID
(C2×D4)⋊1C20 = C5×C22.SD16φ: C20/C5C4 ⊆ Out C2×D480(C2xD4):1C20320,132
(C2×D4)⋊2C20 = C5×C42⋊C4φ: C20/C5C4 ⊆ Out C2×D4404(C2xD4):2C20320,158
(C2×D4)⋊3C20 = C5×C23.23D4φ: C20/C10C2 ⊆ Out C2×D4160(C2xD4):3C20320,887
(C2×D4)⋊4C20 = C5×C24.3C22φ: C20/C10C2 ⊆ Out C2×D4160(C2xD4):4C20320,891
(C2×D4)⋊5C20 = C10×C23⋊C4φ: C20/C10C2 ⊆ Out C2×D480(C2xD4):5C20320,910
(C2×D4)⋊6C20 = C5×C23.C23φ: C20/C10C2 ⊆ Out C2×D4804(C2xD4):6C20320,911
(C2×D4)⋊7C20 = C10×D4⋊C4φ: C20/C10C2 ⊆ Out C2×D4160(C2xD4):7C20320,915
(C2×D4)⋊8C20 = C5×C23.37D4φ: C20/C10C2 ⊆ Out C2×D480(C2xD4):8C20320,919
(C2×D4)⋊9C20 = C10×C4≀C2φ: C20/C10C2 ⊆ Out C2×D480(C2xD4):9C20320,921
(C2×D4)⋊10C20 = C5×C42⋊C22φ: C20/C10C2 ⊆ Out C2×D4804(C2xD4):10C20320,922
(C2×D4)⋊11C20 = C5×C22.11C24φ: C20/C10C2 ⊆ Out C2×D480(C2xD4):11C20320,1520

Non-split extensions G=N.Q with N=C2×D4 and Q=C20
extensionφ:Q→Out NdρLabelID
(C2×D4).1C20 = C5×C42.C22φ: C20/C5C4 ⊆ Out C2×D4160(C2xD4).1C20320,134
(C2×D4).2C20 = C5×C4.D8φ: C20/C5C4 ⊆ Out C2×D4160(C2xD4).2C20320,136
(C2×D4).3C20 = C5×C42.C4φ: C20/C5C4 ⊆ Out C2×D4804(C2xD4).3C20320,160
(C2×D4).4C20 = C5×D4⋊C8φ: C20/C10C2 ⊆ Out C2×D4160(C2xD4).4C20320,130
(C2×D4).5C20 = C5×(C22×C8)⋊C2φ: C20/C10C2 ⊆ Out C2×D4160(C2xD4).5C20320,909
(C2×D4).6C20 = C10×C4.D4φ: C20/C10C2 ⊆ Out C2×D480(C2xD4).6C20320,912
(C2×D4).7C20 = C5×M4(2).8C22φ: C20/C10C2 ⊆ Out C2×D4804(C2xD4).7C20320,914
(C2×D4).8C20 = C5×C89D4φ: C20/C10C2 ⊆ Out C2×D4160(C2xD4).8C20320,936
(C2×D4).9C20 = C5×C86D4φ: C20/C10C2 ⊆ Out C2×D4160(C2xD4).9C20320,937
(C2×D4).10C20 = C5×Q8○M4(2)φ: C20/C10C2 ⊆ Out C2×D4804(C2xD4).10C20320,1570
(C2×D4).11C20 = D4×C40φ: trivial image160(C2xD4).11C20320,935
(C2×D4).12C20 = C10×C8○D4φ: trivial image160(C2xD4).12C20320,1569

׿
×
𝔽