Copied to
clipboard

G = C10xC4wrC2order 320 = 26·5

Direct product of C10 and C4wrC2

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C10xC4wrC2, C4oD4:3C20, (C2xD4):9C20, D4:5(C2xC20), (C2xQ8):7C20, Q8:5(C2xC20), (D4xC10):33C4, (C2xC42):6C10, (Q8xC10):27C4, C4.72(D4xC10), (C4xC20):56C22, C42:15(C2xC10), (C2xC20).519D4, C20.477(C2xD4), C4.7(C22xC20), C23.39(C5xD4), M4(2):9(C2xC10), C22.12(D4xC10), (C10xM4(2)):30C2, (C2xM4(2)):12C10, C20.211(C22xC4), (C2xC20).896C23, (C22xC10).161D4, C20.164(C22:C4), (C5xM4(2)):38C22, (C22xC20).584C22, (C2xC4xC20):19C2, (C5xC4oD4):15C4, (C5xD4):35(C2xC4), (C5xQ8):32(C2xC4), (C2xC4).70(C5xD4), (C2xC4).50(C2xC20), C4oD4.6(C2xC10), (C2xC4oD4).6C10, C4.33(C5xC22:C4), (C2xC20).444(C2xC4), (C10xC4oD4).20C2, (C2xC10).407(C2xD4), C2.23(C10xC22:C4), C22.6(C5xC22:C4), C10.152(C2xC22:C4), (C2xC4).71(C22xC10), (C5xC4oD4).51C22, (C22xC4).113(C2xC10), (C2xC10).204(C22:C4), SmallGroup(320,921)

Series: Derived Chief Lower central Upper central

C1C4 — C10xC4wrC2
C1C2C4C2xC4C2xC20C5xM4(2)C5xC4wrC2 — C10xC4wrC2
C1C2C4 — C10xC4wrC2
C1C2xC20C22xC20 — C10xC4wrC2

Generators and relations for C10xC4wrC2
 G = < a,b,c,d | a10=b4=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b-1, bd=db, dcd-1=b-1c >

Subgroups: 274 in 170 conjugacy classes, 82 normal (46 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C10, C10, C10, C42, C42, C2xC8, M4(2), M4(2), C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C4oD4, C4oD4, C20, C20, C2xC10, C2xC10, C4wrC2, C2xC42, C2xM4(2), C2xC4oD4, C40, C2xC20, C2xC20, C5xD4, C5xD4, C5xQ8, C5xQ8, C22xC10, C22xC10, C2xC4wrC2, C4xC20, C4xC20, C2xC40, C5xM4(2), C5xM4(2), C22xC20, C22xC20, D4xC10, D4xC10, Q8xC10, C5xC4oD4, C5xC4oD4, C5xC4wrC2, C2xC4xC20, C10xM4(2), C10xC4oD4, C10xC4wrC2
Quotients: C1, C2, C4, C22, C5, C2xC4, D4, C23, C10, C22:C4, C22xC4, C2xD4, C20, C2xC10, C4wrC2, C2xC22:C4, C2xC20, C5xD4, C22xC10, C2xC4wrC2, C5xC22:C4, C22xC20, D4xC10, C5xC4wrC2, C10xC22:C4, C10xC4wrC2

Smallest permutation representation of C10xC4wrC2
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 60 64 50)(2 51 65 41)(3 52 66 42)(4 53 67 43)(5 54 68 44)(6 55 69 45)(7 56 70 46)(8 57 61 47)(9 58 62 48)(10 59 63 49)(11 39 29 80)(12 40 30 71)(13 31 21 72)(14 32 22 73)(15 33 23 74)(16 34 24 75)(17 35 25 76)(18 36 26 77)(19 37 27 78)(20 38 28 79)
(1 28)(2 29)(3 30)(4 21)(5 22)(6 23)(7 24)(8 25)(9 26)(10 27)(11 65)(12 66)(13 67)(14 68)(15 69)(16 70)(17 61)(18 62)(19 63)(20 64)(31 53)(32 54)(33 55)(34 56)(35 57)(36 58)(37 59)(38 60)(39 51)(40 52)(41 80)(42 71)(43 72)(44 73)(45 74)(46 75)(47 76)(48 77)(49 78)(50 79)
(1 69)(2 70)(3 61)(4 62)(5 63)(6 64)(7 65)(8 66)(9 67)(10 68)(11 34 29 75)(12 35 30 76)(13 36 21 77)(14 37 22 78)(15 38 23 79)(16 39 24 80)(17 40 25 71)(18 31 26 72)(19 32 27 73)(20 33 28 74)(41 56)(42 57)(43 58)(44 59)(45 60)(46 51)(47 52)(48 53)(49 54)(50 55)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,60,64,50)(2,51,65,41)(3,52,66,42)(4,53,67,43)(5,54,68,44)(6,55,69,45)(7,56,70,46)(8,57,61,47)(9,58,62,48)(10,59,63,49)(11,39,29,80)(12,40,30,71)(13,31,21,72)(14,32,22,73)(15,33,23,74)(16,34,24,75)(17,35,25,76)(18,36,26,77)(19,37,27,78)(20,38,28,79), (1,28)(2,29)(3,30)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,65)(12,66)(13,67)(14,68)(15,69)(16,70)(17,61)(18,62)(19,63)(20,64)(31,53)(32,54)(33,55)(34,56)(35,57)(36,58)(37,59)(38,60)(39,51)(40,52)(41,80)(42,71)(43,72)(44,73)(45,74)(46,75)(47,76)(48,77)(49,78)(50,79), (1,69)(2,70)(3,61)(4,62)(5,63)(6,64)(7,65)(8,66)(9,67)(10,68)(11,34,29,75)(12,35,30,76)(13,36,21,77)(14,37,22,78)(15,38,23,79)(16,39,24,80)(17,40,25,71)(18,31,26,72)(19,32,27,73)(20,33,28,74)(41,56)(42,57)(43,58)(44,59)(45,60)(46,51)(47,52)(48,53)(49,54)(50,55)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,60,64,50)(2,51,65,41)(3,52,66,42)(4,53,67,43)(5,54,68,44)(6,55,69,45)(7,56,70,46)(8,57,61,47)(9,58,62,48)(10,59,63,49)(11,39,29,80)(12,40,30,71)(13,31,21,72)(14,32,22,73)(15,33,23,74)(16,34,24,75)(17,35,25,76)(18,36,26,77)(19,37,27,78)(20,38,28,79), (1,28)(2,29)(3,30)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,65)(12,66)(13,67)(14,68)(15,69)(16,70)(17,61)(18,62)(19,63)(20,64)(31,53)(32,54)(33,55)(34,56)(35,57)(36,58)(37,59)(38,60)(39,51)(40,52)(41,80)(42,71)(43,72)(44,73)(45,74)(46,75)(47,76)(48,77)(49,78)(50,79), (1,69)(2,70)(3,61)(4,62)(5,63)(6,64)(7,65)(8,66)(9,67)(10,68)(11,34,29,75)(12,35,30,76)(13,36,21,77)(14,37,22,78)(15,38,23,79)(16,39,24,80)(17,40,25,71)(18,31,26,72)(19,32,27,73)(20,33,28,74)(41,56)(42,57)(43,58)(44,59)(45,60)(46,51)(47,52)(48,53)(49,54)(50,55) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,60,64,50),(2,51,65,41),(3,52,66,42),(4,53,67,43),(5,54,68,44),(6,55,69,45),(7,56,70,46),(8,57,61,47),(9,58,62,48),(10,59,63,49),(11,39,29,80),(12,40,30,71),(13,31,21,72),(14,32,22,73),(15,33,23,74),(16,34,24,75),(17,35,25,76),(18,36,26,77),(19,37,27,78),(20,38,28,79)], [(1,28),(2,29),(3,30),(4,21),(5,22),(6,23),(7,24),(8,25),(9,26),(10,27),(11,65),(12,66),(13,67),(14,68),(15,69),(16,70),(17,61),(18,62),(19,63),(20,64),(31,53),(32,54),(33,55),(34,56),(35,57),(36,58),(37,59),(38,60),(39,51),(40,52),(41,80),(42,71),(43,72),(44,73),(45,74),(46,75),(47,76),(48,77),(49,78),(50,79)], [(1,69),(2,70),(3,61),(4,62),(5,63),(6,64),(7,65),(8,66),(9,67),(10,68),(11,34,29,75),(12,35,30,76),(13,36,21,77),(14,37,22,78),(15,38,23,79),(16,39,24,80),(17,40,25,71),(18,31,26,72),(19,32,27,73),(20,33,28,74),(41,56),(42,57),(43,58),(44,59),(45,60),(46,51),(47,52),(48,53),(49,54),(50,55)]])

140 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E···4N4O4P5A5B5C5D8A8B8C8D10A···10L10M···10T10U···10AB20A···20P20Q···20BD20BE···20BL40A···40P
order1222222244444···4445555888810···1010···1010···1020···2020···2020···2040···40
size1111224411112···244111144441···12···24···41···12···24···44···4

140 irreducible representations

dim1111111111111111222222
type+++++++
imageC1C2C2C2C2C4C4C4C5C10C10C10C10C20C20C20D4D4C4wrC2C5xD4C5xD4C5xC4wrC2
kernelC10xC4wrC2C5xC4wrC2C2xC4xC20C10xM4(2)C10xC4oD4D4xC10Q8xC10C5xC4oD4C2xC4wrC2C4wrC2C2xC42C2xM4(2)C2xC4oD4C2xD4C2xQ8C4oD4C2xC20C22xC10C10C2xC4C23C2
# reps14111224416444881631812432

Matrix representation of C10xC4wrC2 in GL4(F41) generated by

4000
0400
00400
00040
,
40000
04000
0090
00032
,
43900
283700
00032
0090
,
40000
37100
0010
0009
G:=sub<GL(4,GF(41))| [4,0,0,0,0,4,0,0,0,0,40,0,0,0,0,40],[40,0,0,0,0,40,0,0,0,0,9,0,0,0,0,32],[4,28,0,0,39,37,0,0,0,0,0,9,0,0,32,0],[40,37,0,0,0,1,0,0,0,0,1,0,0,0,0,9] >;

C10xC4wrC2 in GAP, Magma, Sage, TeX

C_{10}\times C_4\wr C_2
% in TeX

G:=Group("C10xC4wrC2");
// GroupNames label

G:=SmallGroup(320,921);
// by ID

G=gap.SmallGroup(320,921);
# by ID

G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,560,589,7004,3511,172,124]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^4=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,b*d=d*b,d*c*d^-1=b^-1*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<