Extensions 1→N→G→Q→1 with N=D4 and Q=C5xD4

Direct product G=NxQ with N=D4 and Q=C5xD4
dρLabelID
C5xD4280C5xD4^2320,1547

Semidirect products G=N:Q with N=D4 and Q=C5xD4
extensionφ:Q→Out NdρLabelID
D4:1(C5xD4) = C5xC4:D8φ: C5xD4/C20C2 ⊆ Out D4160D4:1(C5xD4)320,960
D4:2(C5xD4) = C5xC22:D8φ: C5xD4/C2xC10C2 ⊆ Out D480D4:2(C5xD4)320,948
D4:3(C5xD4) = C5xD4:D4φ: C5xD4/C2xC10C2 ⊆ Out D4160D4:3(C5xD4)320,950
D4:4(C5xD4) = C5xD4:4D4φ: C5xD4/C2xC10C2 ⊆ Out D4404D4:4(C5xD4)320,954
D4:5(C5xD4) = C5xD4:5D4φ: trivial image80D4:5(C5xD4)320,1548
D4:6(C5xD4) = C5xD4:6D4φ: trivial image160D4:6(C5xD4)320,1549

Non-split extensions G=N.Q with N=D4 and Q=C5xD4
extensionφ:Q→Out NdρLabelID
D4.1(C5xD4) = C5xD4.D4φ: C5xD4/C20C2 ⊆ Out D4160D4.1(C5xD4)320,962
D4.2(C5xD4) = C5xD4.2D4φ: C5xD4/C20C2 ⊆ Out D4160D4.2(C5xD4)320,964
D4.3(C5xD4) = C5xD4.3D4φ: C5xD4/C20C2 ⊆ Out D4804D4.3(C5xD4)320,972
D4.4(C5xD4) = C5xD4.4D4φ: C5xD4/C20C2 ⊆ Out D4804D4.4(C5xD4)320,973
D4.5(C5xD4) = C5xD4.5D4φ: C5xD4/C20C2 ⊆ Out D41604D4.5(C5xD4)320,974
D4.6(C5xD4) = C5xC22:SD16φ: C5xD4/C2xC10C2 ⊆ Out D480D4.6(C5xD4)320,951
D4.7(C5xD4) = C5xD4.7D4φ: C5xD4/C2xC10C2 ⊆ Out D4160D4.7(C5xD4)320,953
D4.8(C5xD4) = C5xD4.8D4φ: C5xD4/C2xC10C2 ⊆ Out D4804D4.8(C5xD4)320,955
D4.9(C5xD4) = C5xD4.9D4φ: C5xD4/C2xC10C2 ⊆ Out D4804D4.9(C5xD4)320,956
D4.10(C5xD4) = C5xD4.10D4φ: C5xD4/C2xC10C2 ⊆ Out D4804D4.10(C5xD4)320,957
D4.11(C5xD4) = C5xD4oD8φ: trivial image804D4.11(C5xD4)320,1578
D4.12(C5xD4) = C5xD4oSD16φ: trivial image804D4.12(C5xD4)320,1579
D4.13(C5xD4) = C5xQ8oD8φ: trivial image1604D4.13(C5xD4)320,1580

׿
x
:
Z
F
o
wr
Q
<