direct product, metabelian, nilpotent (class 3), monomial, 2-elementary
Aliases: C5×D4.2D4, C4⋊C8⋊5C10, (C4×D4)⋊4C10, D4.2(C5×D4), (D4×C20)⋊33C2, (C10×D8).9C2, (C5×D4).27D4, (C2×D8).2C10, C4.35(D4×C10), Q8⋊C4⋊6C10, C20.396(C2×D4), (C2×C20).325D4, C4.4D4⋊3C10, D4⋊C4⋊11C10, (C10×SD16)⋊29C2, (C2×SD16)⋊12C10, C42.18(C2×C10), C22.87(D4×C10), C20.345(C4○D4), C10.121(C4○D8), (C2×C40).301C22, (C4×C20).260C22, (C2×C20).922C23, C10.146(C4⋊D4), C10.136(C8⋊C22), (D4×C10).187C22, (Q8×C10).161C22, (C5×C4⋊C8)⋊24C2, C2.8(C5×C4○D8), C4.44(C5×C4○D4), (C2×C4).30(C5×D4), C4⋊C4.55(C2×C10), (C2×C8).38(C2×C10), C2.15(C5×C4⋊D4), C2.11(C5×C8⋊C22), (C2×Q8).6(C2×C10), (C5×D4⋊C4)⋊35C2, (C5×Q8⋊C4)⋊29C2, (C2×D4).57(C2×C10), (C2×C10).643(C2×D4), (C5×C4.4D4)⋊23C2, (C5×C4⋊C4).376C22, (C2×C4).97(C22×C10), SmallGroup(320,964)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5×D4.2D4
G = < a,b,c,d,e | a5=b4=c2=d4=1, e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe-1=b-1, bd=db, cd=dc, ece-1=bc, ede-1=b2d-1 >
Subgroups: 250 in 124 conjugacy classes, 54 normal (50 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, D8, SD16, C22×C4, C2×D4, C2×Q8, C20, C20, C2×C10, C2×C10, D4⋊C4, Q8⋊C4, C4⋊C8, C4×D4, C4.4D4, C2×D8, C2×SD16, C40, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C22×C10, D4.2D4, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×C40, C5×D8, C5×SD16, C22×C20, D4×C10, Q8×C10, C5×D4⋊C4, C5×Q8⋊C4, C5×C4⋊C8, D4×C20, C5×C4.4D4, C10×D8, C10×SD16, C5×D4.2D4
Quotients: C1, C2, C22, C5, D4, C23, C10, C2×D4, C4○D4, C2×C10, C4⋊D4, C4○D8, C8⋊C22, C5×D4, C22×C10, D4.2D4, D4×C10, C5×C4○D4, C5×C4⋊D4, C5×C4○D8, C5×C8⋊C22, C5×D4.2D4
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 37 12 66)(2 38 13 67)(3 39 14 68)(4 40 15 69)(5 36 11 70)(6 23 144 156)(7 24 145 157)(8 25 141 158)(9 21 142 159)(10 22 143 160)(16 33 137 154)(17 34 138 155)(18 35 139 151)(19 31 140 152)(20 32 136 153)(26 43 50 52)(27 44 46 53)(28 45 47 54)(29 41 48 55)(30 42 49 51)(56 73 94 87)(57 74 95 88)(58 75 91 89)(59 71 92 90)(60 72 93 86)(61 78 82 107)(62 79 83 108)(63 80 84 109)(64 76 85 110)(65 77 81 106)(96 127 134 113)(97 128 135 114)(98 129 131 115)(99 130 132 111)(100 126 133 112)(101 147 122 118)(102 148 123 119)(103 149 124 120)(104 150 125 116)(105 146 121 117)
(1 77)(2 78)(3 79)(4 80)(5 76)(6 150)(7 146)(8 147)(9 148)(10 149)(11 110)(12 106)(13 107)(14 108)(15 109)(16 128)(17 129)(18 130)(19 126)(20 127)(21 102)(22 103)(23 104)(24 105)(25 101)(26 59)(27 60)(28 56)(29 57)(30 58)(31 100)(32 96)(33 97)(34 98)(35 99)(36 64)(37 65)(38 61)(39 62)(40 63)(41 88)(42 89)(43 90)(44 86)(45 87)(46 93)(47 94)(48 95)(49 91)(50 92)(51 75)(52 71)(53 72)(54 73)(55 74)(66 81)(67 82)(68 83)(69 84)(70 85)(111 139)(112 140)(113 136)(114 137)(115 138)(116 144)(117 145)(118 141)(119 142)(120 143)(121 157)(122 158)(123 159)(124 160)(125 156)(131 155)(132 151)(133 152)(134 153)(135 154)
(1 134 54 121)(2 135 55 122)(3 131 51 123)(4 132 52 124)(5 133 53 125)(6 85 19 93)(7 81 20 94)(8 82 16 95)(9 83 17 91)(10 84 18 92)(11 100 44 104)(12 96 45 105)(13 97 41 101)(14 98 42 102)(15 99 43 103)(21 108 34 89)(22 109 35 90)(23 110 31 86)(24 106 32 87)(25 107 33 88)(26 120 40 111)(27 116 36 112)(28 117 37 113)(29 118 38 114)(30 119 39 115)(46 150 70 126)(47 146 66 127)(48 147 67 128)(49 148 68 129)(50 149 69 130)(56 145 65 136)(57 141 61 137)(58 142 62 138)(59 143 63 139)(60 144 64 140)(71 160 80 151)(72 156 76 152)(73 157 77 153)(74 158 78 154)(75 159 79 155)
(1 105 12 121)(2 101 13 122)(3 102 14 123)(4 103 15 124)(5 104 11 125)(6 110 144 76)(7 106 145 77)(8 107 141 78)(9 108 142 79)(10 109 143 80)(16 88 137 74)(17 89 138 75)(18 90 139 71)(19 86 140 72)(20 87 136 73)(21 83 159 62)(22 84 160 63)(23 85 156 64)(24 81 157 65)(25 82 158 61)(26 111 50 130)(27 112 46 126)(28 113 47 127)(29 114 48 128)(30 115 49 129)(31 93 152 60)(32 94 153 56)(33 95 154 57)(34 91 155 58)(35 92 151 59)(36 116 70 150)(37 117 66 146)(38 118 67 147)(39 119 68 148)(40 120 69 149)(41 135 55 97)(42 131 51 98)(43 132 52 99)(44 133 53 100)(45 134 54 96)
G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,37,12,66)(2,38,13,67)(3,39,14,68)(4,40,15,69)(5,36,11,70)(6,23,144,156)(7,24,145,157)(8,25,141,158)(9,21,142,159)(10,22,143,160)(16,33,137,154)(17,34,138,155)(18,35,139,151)(19,31,140,152)(20,32,136,153)(26,43,50,52)(27,44,46,53)(28,45,47,54)(29,41,48,55)(30,42,49,51)(56,73,94,87)(57,74,95,88)(58,75,91,89)(59,71,92,90)(60,72,93,86)(61,78,82,107)(62,79,83,108)(63,80,84,109)(64,76,85,110)(65,77,81,106)(96,127,134,113)(97,128,135,114)(98,129,131,115)(99,130,132,111)(100,126,133,112)(101,147,122,118)(102,148,123,119)(103,149,124,120)(104,150,125,116)(105,146,121,117), (1,77)(2,78)(3,79)(4,80)(5,76)(6,150)(7,146)(8,147)(9,148)(10,149)(11,110)(12,106)(13,107)(14,108)(15,109)(16,128)(17,129)(18,130)(19,126)(20,127)(21,102)(22,103)(23,104)(24,105)(25,101)(26,59)(27,60)(28,56)(29,57)(30,58)(31,100)(32,96)(33,97)(34,98)(35,99)(36,64)(37,65)(38,61)(39,62)(40,63)(41,88)(42,89)(43,90)(44,86)(45,87)(46,93)(47,94)(48,95)(49,91)(50,92)(51,75)(52,71)(53,72)(54,73)(55,74)(66,81)(67,82)(68,83)(69,84)(70,85)(111,139)(112,140)(113,136)(114,137)(115,138)(116,144)(117,145)(118,141)(119,142)(120,143)(121,157)(122,158)(123,159)(124,160)(125,156)(131,155)(132,151)(133,152)(134,153)(135,154), (1,134,54,121)(2,135,55,122)(3,131,51,123)(4,132,52,124)(5,133,53,125)(6,85,19,93)(7,81,20,94)(8,82,16,95)(9,83,17,91)(10,84,18,92)(11,100,44,104)(12,96,45,105)(13,97,41,101)(14,98,42,102)(15,99,43,103)(21,108,34,89)(22,109,35,90)(23,110,31,86)(24,106,32,87)(25,107,33,88)(26,120,40,111)(27,116,36,112)(28,117,37,113)(29,118,38,114)(30,119,39,115)(46,150,70,126)(47,146,66,127)(48,147,67,128)(49,148,68,129)(50,149,69,130)(56,145,65,136)(57,141,61,137)(58,142,62,138)(59,143,63,139)(60,144,64,140)(71,160,80,151)(72,156,76,152)(73,157,77,153)(74,158,78,154)(75,159,79,155), (1,105,12,121)(2,101,13,122)(3,102,14,123)(4,103,15,124)(5,104,11,125)(6,110,144,76)(7,106,145,77)(8,107,141,78)(9,108,142,79)(10,109,143,80)(16,88,137,74)(17,89,138,75)(18,90,139,71)(19,86,140,72)(20,87,136,73)(21,83,159,62)(22,84,160,63)(23,85,156,64)(24,81,157,65)(25,82,158,61)(26,111,50,130)(27,112,46,126)(28,113,47,127)(29,114,48,128)(30,115,49,129)(31,93,152,60)(32,94,153,56)(33,95,154,57)(34,91,155,58)(35,92,151,59)(36,116,70,150)(37,117,66,146)(38,118,67,147)(39,119,68,148)(40,120,69,149)(41,135,55,97)(42,131,51,98)(43,132,52,99)(44,133,53,100)(45,134,54,96)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,37,12,66)(2,38,13,67)(3,39,14,68)(4,40,15,69)(5,36,11,70)(6,23,144,156)(7,24,145,157)(8,25,141,158)(9,21,142,159)(10,22,143,160)(16,33,137,154)(17,34,138,155)(18,35,139,151)(19,31,140,152)(20,32,136,153)(26,43,50,52)(27,44,46,53)(28,45,47,54)(29,41,48,55)(30,42,49,51)(56,73,94,87)(57,74,95,88)(58,75,91,89)(59,71,92,90)(60,72,93,86)(61,78,82,107)(62,79,83,108)(63,80,84,109)(64,76,85,110)(65,77,81,106)(96,127,134,113)(97,128,135,114)(98,129,131,115)(99,130,132,111)(100,126,133,112)(101,147,122,118)(102,148,123,119)(103,149,124,120)(104,150,125,116)(105,146,121,117), (1,77)(2,78)(3,79)(4,80)(5,76)(6,150)(7,146)(8,147)(9,148)(10,149)(11,110)(12,106)(13,107)(14,108)(15,109)(16,128)(17,129)(18,130)(19,126)(20,127)(21,102)(22,103)(23,104)(24,105)(25,101)(26,59)(27,60)(28,56)(29,57)(30,58)(31,100)(32,96)(33,97)(34,98)(35,99)(36,64)(37,65)(38,61)(39,62)(40,63)(41,88)(42,89)(43,90)(44,86)(45,87)(46,93)(47,94)(48,95)(49,91)(50,92)(51,75)(52,71)(53,72)(54,73)(55,74)(66,81)(67,82)(68,83)(69,84)(70,85)(111,139)(112,140)(113,136)(114,137)(115,138)(116,144)(117,145)(118,141)(119,142)(120,143)(121,157)(122,158)(123,159)(124,160)(125,156)(131,155)(132,151)(133,152)(134,153)(135,154), (1,134,54,121)(2,135,55,122)(3,131,51,123)(4,132,52,124)(5,133,53,125)(6,85,19,93)(7,81,20,94)(8,82,16,95)(9,83,17,91)(10,84,18,92)(11,100,44,104)(12,96,45,105)(13,97,41,101)(14,98,42,102)(15,99,43,103)(21,108,34,89)(22,109,35,90)(23,110,31,86)(24,106,32,87)(25,107,33,88)(26,120,40,111)(27,116,36,112)(28,117,37,113)(29,118,38,114)(30,119,39,115)(46,150,70,126)(47,146,66,127)(48,147,67,128)(49,148,68,129)(50,149,69,130)(56,145,65,136)(57,141,61,137)(58,142,62,138)(59,143,63,139)(60,144,64,140)(71,160,80,151)(72,156,76,152)(73,157,77,153)(74,158,78,154)(75,159,79,155), (1,105,12,121)(2,101,13,122)(3,102,14,123)(4,103,15,124)(5,104,11,125)(6,110,144,76)(7,106,145,77)(8,107,141,78)(9,108,142,79)(10,109,143,80)(16,88,137,74)(17,89,138,75)(18,90,139,71)(19,86,140,72)(20,87,136,73)(21,83,159,62)(22,84,160,63)(23,85,156,64)(24,81,157,65)(25,82,158,61)(26,111,50,130)(27,112,46,126)(28,113,47,127)(29,114,48,128)(30,115,49,129)(31,93,152,60)(32,94,153,56)(33,95,154,57)(34,91,155,58)(35,92,151,59)(36,116,70,150)(37,117,66,146)(38,118,67,147)(39,119,68,148)(40,120,69,149)(41,135,55,97)(42,131,51,98)(43,132,52,99)(44,133,53,100)(45,134,54,96) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,37,12,66),(2,38,13,67),(3,39,14,68),(4,40,15,69),(5,36,11,70),(6,23,144,156),(7,24,145,157),(8,25,141,158),(9,21,142,159),(10,22,143,160),(16,33,137,154),(17,34,138,155),(18,35,139,151),(19,31,140,152),(20,32,136,153),(26,43,50,52),(27,44,46,53),(28,45,47,54),(29,41,48,55),(30,42,49,51),(56,73,94,87),(57,74,95,88),(58,75,91,89),(59,71,92,90),(60,72,93,86),(61,78,82,107),(62,79,83,108),(63,80,84,109),(64,76,85,110),(65,77,81,106),(96,127,134,113),(97,128,135,114),(98,129,131,115),(99,130,132,111),(100,126,133,112),(101,147,122,118),(102,148,123,119),(103,149,124,120),(104,150,125,116),(105,146,121,117)], [(1,77),(2,78),(3,79),(4,80),(5,76),(6,150),(7,146),(8,147),(9,148),(10,149),(11,110),(12,106),(13,107),(14,108),(15,109),(16,128),(17,129),(18,130),(19,126),(20,127),(21,102),(22,103),(23,104),(24,105),(25,101),(26,59),(27,60),(28,56),(29,57),(30,58),(31,100),(32,96),(33,97),(34,98),(35,99),(36,64),(37,65),(38,61),(39,62),(40,63),(41,88),(42,89),(43,90),(44,86),(45,87),(46,93),(47,94),(48,95),(49,91),(50,92),(51,75),(52,71),(53,72),(54,73),(55,74),(66,81),(67,82),(68,83),(69,84),(70,85),(111,139),(112,140),(113,136),(114,137),(115,138),(116,144),(117,145),(118,141),(119,142),(120,143),(121,157),(122,158),(123,159),(124,160),(125,156),(131,155),(132,151),(133,152),(134,153),(135,154)], [(1,134,54,121),(2,135,55,122),(3,131,51,123),(4,132,52,124),(5,133,53,125),(6,85,19,93),(7,81,20,94),(8,82,16,95),(9,83,17,91),(10,84,18,92),(11,100,44,104),(12,96,45,105),(13,97,41,101),(14,98,42,102),(15,99,43,103),(21,108,34,89),(22,109,35,90),(23,110,31,86),(24,106,32,87),(25,107,33,88),(26,120,40,111),(27,116,36,112),(28,117,37,113),(29,118,38,114),(30,119,39,115),(46,150,70,126),(47,146,66,127),(48,147,67,128),(49,148,68,129),(50,149,69,130),(56,145,65,136),(57,141,61,137),(58,142,62,138),(59,143,63,139),(60,144,64,140),(71,160,80,151),(72,156,76,152),(73,157,77,153),(74,158,78,154),(75,159,79,155)], [(1,105,12,121),(2,101,13,122),(3,102,14,123),(4,103,15,124),(5,104,11,125),(6,110,144,76),(7,106,145,77),(8,107,141,78),(9,108,142,79),(10,109,143,80),(16,88,137,74),(17,89,138,75),(18,90,139,71),(19,86,140,72),(20,87,136,73),(21,83,159,62),(22,84,160,63),(23,85,156,64),(24,81,157,65),(25,82,158,61),(26,111,50,130),(27,112,46,126),(28,113,47,127),(29,114,48,128),(30,115,49,129),(31,93,152,60),(32,94,153,56),(33,95,154,57),(34,91,155,58),(35,92,151,59),(36,116,70,150),(37,117,66,146),(38,118,67,147),(39,119,68,148),(40,120,69,149),(41,135,55,97),(42,131,51,98),(43,132,52,99),(44,133,53,100),(45,134,54,96)]])
95 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 5A | 5B | 5C | 5D | 8A | 8B | 8C | 8D | 10A | ··· | 10L | 10M | ··· | 10T | 10U | 10V | 10W | 10X | 20A | ··· | 20P | 20Q | ··· | 20AB | 20AC | 20AD | 20AE | 20AF | 40A | ··· | 40P |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | ··· | 20 | 20 | 20 | 20 | 20 | 40 | ··· | 40 |
| size | 1 | 1 | 1 | 1 | 4 | 4 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 1 | ··· | 1 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 |
95 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | |||||||||||||||
| image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C5 | C10 | C10 | C10 | C10 | C10 | C10 | C10 | D4 | D4 | C4○D4 | C4○D8 | C5×D4 | C5×D4 | C5×C4○D4 | C5×C4○D8 | C8⋊C22 | C5×C8⋊C22 |
| kernel | C5×D4.2D4 | C5×D4⋊C4 | C5×Q8⋊C4 | C5×C4⋊C8 | D4×C20 | C5×C4.4D4 | C10×D8 | C10×SD16 | D4.2D4 | D4⋊C4 | Q8⋊C4 | C4⋊C8 | C4×D4 | C4.4D4 | C2×D8 | C2×SD16 | C2×C20 | C5×D4 | C20 | C10 | C2×C4 | D4 | C4 | C2 | C10 | C2 |
| # reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 4 | 8 | 8 | 8 | 16 | 1 | 4 |
Matrix representation of C5×D4.2D4 ►in GL4(𝔽41) generated by
| 16 | 0 | 0 | 0 |
| 0 | 16 | 0 | 0 |
| 0 | 0 | 16 | 0 |
| 0 | 0 | 0 | 16 |
| 40 | 0 | 0 | 0 |
| 0 | 40 | 0 | 0 |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 40 | 0 |
| 0 | 40 | 0 | 0 |
| 40 | 0 | 0 | 0 |
| 0 | 0 | 12 | 29 |
| 0 | 0 | 29 | 29 |
| 0 | 9 | 0 | 0 |
| 9 | 0 | 0 | 0 |
| 0 | 0 | 32 | 0 |
| 0 | 0 | 0 | 32 |
| 0 | 32 | 0 | 0 |
| 9 | 0 | 0 | 0 |
| 0 | 0 | 32 | 0 |
| 0 | 0 | 0 | 9 |
G:=sub<GL(4,GF(41))| [16,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[40,0,0,0,0,40,0,0,0,0,0,40,0,0,1,0],[0,40,0,0,40,0,0,0,0,0,12,29,0,0,29,29],[0,9,0,0,9,0,0,0,0,0,32,0,0,0,0,32],[0,9,0,0,32,0,0,0,0,0,32,0,0,0,0,9] >;
C5×D4.2D4 in GAP, Magma, Sage, TeX
C_5\times D_4._2D_4
% in TeX
G:=Group("C5xD4.2D4"); // GroupNames label
G:=SmallGroup(320,964);
// by ID
G=gap.SmallGroup(320,964);
# by ID
G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,589,1408,1766,10085,2539,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^5=b^4=c^2=d^4=1,e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e^-1=b^-1,b*d=d*b,c*d=d*c,e*c*e^-1=b*c,e*d*e^-1=b^2*d^-1>;
// generators/relations