Extensions 1→N→G→Q→1 with N=C2×Q8 and Q=C20

Direct product G=N×Q with N=C2×Q8 and Q=C20
dρLabelID
Q8×C2×C20320Q8xC2xC20320,1518

Semidirect products G=N:Q with N=C2×Q8 and Q=C20
extensionφ:Q→Out NdρLabelID
(C2×Q8)⋊1C20 = C5×C23.31D4φ: C20/C5C4 ⊆ Out C2×Q880(C2xQ8):1C20320,133
(C2×Q8)⋊2C20 = C5×C423C4φ: C20/C5C4 ⊆ Out C2×Q8804(C2xQ8):2C20320,159
(C2×Q8)⋊3C20 = C5×C23.67C23φ: C20/C10C2 ⊆ Out C2×Q8320(C2xQ8):3C20320,892
(C2×Q8)⋊4C20 = C5×C23.C23φ: C20/C10C2 ⊆ Out C2×Q8804(C2xQ8):4C20320,911
(C2×Q8)⋊5C20 = C10×Q8⋊C4φ: C20/C10C2 ⊆ Out C2×Q8320(C2xQ8):5C20320,916
(C2×Q8)⋊6C20 = C5×C23.38D4φ: C20/C10C2 ⊆ Out C2×Q8160(C2xQ8):6C20320,920
(C2×Q8)⋊7C20 = C10×C4≀C2φ: C20/C10C2 ⊆ Out C2×Q880(C2xQ8):7C20320,921
(C2×Q8)⋊8C20 = C5×C42⋊C22φ: C20/C10C2 ⊆ Out C2×Q8804(C2xQ8):8C20320,922
(C2×Q8)⋊9C20 = C5×C23.32C23φ: C20/C10C2 ⊆ Out C2×Q8160(C2xQ8):9C20320,1521

Non-split extensions G=N.Q with N=C2×Q8 and Q=C20
extensionφ:Q→Out NdρLabelID
(C2×Q8).1C20 = C5×C42.C22φ: C20/C5C4 ⊆ Out C2×Q8160(C2xQ8).1C20320,134
(C2×Q8).2C20 = C5×C4.6Q16φ: C20/C5C4 ⊆ Out C2×Q8320(C2xQ8).2C20320,138
(C2×Q8).3C20 = C5×C42.3C4φ: C20/C5C4 ⊆ Out C2×Q8804(C2xQ8).3C20320,161
(C2×Q8).4C20 = C5×Q8⋊C8φ: C20/C10C2 ⊆ Out C2×Q8320(C2xQ8).4C20320,131
(C2×Q8).5C20 = C5×(C22×C8)⋊C2φ: C20/C10C2 ⊆ Out C2×Q8160(C2xQ8).5C20320,909
(C2×Q8).6C20 = C10×C4.10D4φ: C20/C10C2 ⊆ Out C2×Q8160(C2xQ8).6C20320,913
(C2×Q8).7C20 = C5×C84Q8φ: C20/C10C2 ⊆ Out C2×Q8320(C2xQ8).7C20320,947
(C2×Q8).8C20 = C5×Q8○M4(2)φ: C20/C10C2 ⊆ Out C2×Q8804(C2xQ8).8C20320,1570
(C2×Q8).9C20 = Q8×C40φ: trivial image320(C2xQ8).9C20320,946
(C2×Q8).10C20 = C10×C8○D4φ: trivial image160(C2xQ8).10C20320,1569

׿
×
𝔽