Extensions 1→N→G→Q→1 with N=D46D10 and Q=C2

Direct product G=N×Q with N=D46D10 and Q=C2
dρLabelID
C2×D46D1080C2xD4:6D10320,1614

Semidirect products G=N:Q with N=D46D10 and Q=C2
extensionφ:Q→Out NdρLabelID
D46D101C2 = C23⋊D20φ: C2/C1C2 ⊆ Out D46D10408+D4:6D10:1C2320,368
D46D102C2 = D201D4φ: C2/C1C2 ⊆ Out D46D10408+D4:6D10:2C2320,374
D46D103C2 = C242D10φ: C2/C1C2 ⊆ Out D46D10404D4:6D10:3C2320,659
D46D104C2 = D205D4φ: C2/C1C2 ⊆ Out D46D10404D4:6D10:4C2320,704
D46D105C2 = D813D10φ: C2/C1C2 ⊆ Out D46D10804D4:6D10:5C2320,1429
D46D106C2 = D20.29D4φ: C2/C1C2 ⊆ Out D46D10804D4:6D10:6C2320,1434
D46D107C2 = D85D10φ: C2/C1C2 ⊆ Out D46D10808+D4:6D10:7C2320,1446
D46D108C2 = D86D10φ: C2/C1C2 ⊆ Out D46D10808-D4:6D10:8C2320,1447
D46D109C2 = D5×2+ 1+4φ: C2/C1C2 ⊆ Out D46D10408+D4:6D10:9C2320,1622
D46D1010C2 = D20.37C23φ: C2/C1C2 ⊆ Out D46D10808-D4:6D10:10C2320,1623
D46D1011C2 = C10.C25φ: trivial image804D4:6D10:11C2320,1621

Non-split extensions G=N.Q with N=D46D10 and Q=C2
extensionφ:Q→Out NdρLabelID
D46D10.1C2 = C23.5D20φ: C2/C1C2 ⊆ Out D46D10808-D4:6D10.1C2320,369
D46D10.2C2 = D20.1D4φ: C2/C1C2 ⊆ Out D46D10808-D4:6D10.2C2320,373
D46D10.3C2 = C22⋊C4⋊D10φ: C2/C1C2 ⊆ Out D46D10804D4:6D10.3C2320,680
D46D10.4C2 = C425D10φ: C2/C1C2 ⊆ Out D46D10804D4:6D10.4C2320,688

׿
×
𝔽