metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4:6D10, C23:2D10, D20:8C22, C10.7C24, C5:12+ 1+4, C20.21C23, D10.3C23, Dic10:8C22, Dic5.4C23, (D4xD5):4C2, (C2xD4):7D5, (C2xC4):3D10, C4oD20:5C2, (D4xC10):7C2, D4:2D5:4C2, (C2xC20):3C22, (C5xD4):7C22, (C4xD5):1C22, C5:D4:3C22, C2.8(C23xD5), (C2xC10).2C23, C4.21(C22xD5), (C22xC10):5C22, (C2xDic5):4C22, (C22xD5):3C22, C22.6(C22xD5), (C2xC5:D4):11C2, SmallGroup(160,219)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4:6D10
G = < a,b,c,d | a4=b2=c10=d2=1, bab=cac-1=a-1, ad=da, cbc-1=dbd=a2b, dcd=c-1 >
Subgroups: 520 in 166 conjugacy classes, 85 normal (11 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C2xC4, C2xC4, D4, D4, Q8, C23, C23, D5, C10, C10, C2xD4, C2xD4, C4oD4, Dic5, C20, D10, D10, C2xC10, C2xC10, C2xC10, 2+ 1+4, Dic10, C4xD5, D20, C2xDic5, C5:D4, C2xC20, C5xD4, C22xD5, C22xC10, C4oD20, D4xD5, D4:2D5, C2xC5:D4, D4xC10, D4:6D10
Quotients: C1, C2, C22, C23, D5, C24, D10, 2+ 1+4, C22xD5, C23xD5, D4:6D10
(1 37 10 32)(2 33 6 38)(3 39 7 34)(4 35 8 40)(5 31 9 36)(11 24 16 29)(12 30 17 25)(13 26 18 21)(14 22 19 27)(15 28 20 23)
(1 23)(2 29)(3 25)(4 21)(5 27)(6 24)(7 30)(8 26)(9 22)(10 28)(11 38)(12 34)(13 40)(14 36)(15 32)(16 33)(17 39)(18 35)(19 31)(20 37)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)
(2 5)(3 4)(6 9)(7 8)(11 19)(12 18)(13 17)(14 16)(15 20)(21 30)(22 29)(23 28)(24 27)(25 26)(31 33)(34 40)(35 39)(36 38)
G:=sub<Sym(40)| (1,37,10,32)(2,33,6,38)(3,39,7,34)(4,35,8,40)(5,31,9,36)(11,24,16,29)(12,30,17,25)(13,26,18,21)(14,22,19,27)(15,28,20,23), (1,23)(2,29)(3,25)(4,21)(5,27)(6,24)(7,30)(8,26)(9,22)(10,28)(11,38)(12,34)(13,40)(14,36)(15,32)(16,33)(17,39)(18,35)(19,31)(20,37), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (2,5)(3,4)(6,9)(7,8)(11,19)(12,18)(13,17)(14,16)(15,20)(21,30)(22,29)(23,28)(24,27)(25,26)(31,33)(34,40)(35,39)(36,38)>;
G:=Group( (1,37,10,32)(2,33,6,38)(3,39,7,34)(4,35,8,40)(5,31,9,36)(11,24,16,29)(12,30,17,25)(13,26,18,21)(14,22,19,27)(15,28,20,23), (1,23)(2,29)(3,25)(4,21)(5,27)(6,24)(7,30)(8,26)(9,22)(10,28)(11,38)(12,34)(13,40)(14,36)(15,32)(16,33)(17,39)(18,35)(19,31)(20,37), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (2,5)(3,4)(6,9)(7,8)(11,19)(12,18)(13,17)(14,16)(15,20)(21,30)(22,29)(23,28)(24,27)(25,26)(31,33)(34,40)(35,39)(36,38) );
G=PermutationGroup([[(1,37,10,32),(2,33,6,38),(3,39,7,34),(4,35,8,40),(5,31,9,36),(11,24,16,29),(12,30,17,25),(13,26,18,21),(14,22,19,27),(15,28,20,23)], [(1,23),(2,29),(3,25),(4,21),(5,27),(6,24),(7,30),(8,26),(9,22),(10,28),(11,38),(12,34),(13,40),(14,36),(15,32),(16,33),(17,39),(18,35),(19,31),(20,37)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40)], [(2,5),(3,4),(6,9),(7,8),(11,19),(12,18),(13,17),(14,16),(15,20),(21,30),(22,29),(23,28),(24,27),(25,26),(31,33),(34,40),(35,39),(36,38)]])
D4:6D10 is a maximal subgroup of
C23:D20 C23.5D20 D20.1D4 D20:1D4 C24:2D10 C22:C4:D10 C42:5D10 D20:5D4 D8:13D10 D20.29D4 D8:5D10 D8:6D10 C10.C25 D5x2+ 1+4 D20.37C23 D20:26D6 D20:13D6 D12:14D10 C15:2+ 1+4 D4:6D30
D4:6D10 is a maximal quotient of
C23:2Dic10 C24.24D10 C24.27D10 C23:3D20 C24.30D10 C24.31D10 C10.12- 1+4 C10.82+ 1+4 C10.2+ 1+4 C10.102+ 1+4 C10.112+ 1+4 C10.62- 1+4 D4:5Dic10 C42.104D10 C42:11D10 C42.108D10 D4:5D20 C42:16D10 C42.113D10 C42.114D10 C42:17D10 C42.115D10 C42.116D10 C42.118D10 C24.32D10 C24:3D10 C24:4D10 C24.33D10 C24.34D10 C24.35D10 C24:5D10 C24.36D10 C10.682- 1+4 Dic10:20D4 C10.342+ 1+4 C10.352+ 1+4 C10.362+ 1+4 C10.372+ 1+4 C10.382+ 1+4 C10.392+ 1+4 C10.402+ 1+4 D20:20D4 C10.422+ 1+4 C10.432+ 1+4 C10.442+ 1+4 C10.452+ 1+4 C10.462+ 1+4 C10.472+ 1+4 C10.482+ 1+4 C10.742- 1+4 C10.502+ 1+4 C10.512+ 1+4 C10.522+ 1+4 C10.532+ 1+4 C10.202- 1+4 C10.222- 1+4 C10.562+ 1+4 C10.572+ 1+4 C10.582+ 1+4 C10.262- 1+4 C10.812- 1+4 C10.612+ 1+4 C10.622+ 1+4 C10.632+ 1+4 C10.642+ 1+4 C10.842- 1+4 C10.662+ 1+4 C10.672+ 1+4 C10.682+ 1+4 C10.692+ 1+4 C42.137D10 C42.138D10 C42.140D10 C42:20D10 C42:21D10 C42:22D10 C42.145D10 C42.166D10 C42:26D10 D20:11D4 Dic10:11D4 C42.168D10 C42:28D10 Dic10:9Q8 C42.174D10 D20:9Q8 C42.178D10 C42.179D10 C42.180D10 C24.38D10 D4xC5:D4 C24:8D10 C24.41D10 C24.42D10 D20:26D6 D20:13D6 D12:14D10 C15:2+ 1+4 D4:6D30
37 conjugacy classes
class | 1 | 2A | 2B | ··· | 2F | 2G | 2H | 2I | 2J | 4A | 4B | 4C | 4D | 4E | 4F | 5A | 5B | 10A | ··· | 10F | 10G | ··· | 10N | 20A | 20B | 20C | 20D |
order | 1 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 2 | ··· | 2 | 10 | 10 | 10 | 10 | 2 | 2 | 10 | 10 | 10 | 10 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
37 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | D5 | D10 | D10 | D10 | 2+ 1+4 | D4:6D10 |
kernel | D4:6D10 | C4oD20 | D4xD5 | D4:2D5 | C2xC5:D4 | D4xC10 | C2xD4 | C2xC4 | D4 | C23 | C5 | C1 |
# reps | 1 | 2 | 4 | 4 | 4 | 1 | 2 | 2 | 8 | 4 | 1 | 4 |
Matrix representation of D4:6D10 ►in GL4(F41) generated by
40 | 40 | 39 | 25 |
17 | 17 | 0 | 25 |
0 | 40 | 18 | 1 |
17 | 35 | 3 | 7 |
0 | 0 | 34 | 1 |
1 | 1 | 39 | 40 |
0 | 0 | 40 | 0 |
1 | 0 | 34 | 0 |
40 | 7 | 0 | 0 |
34 | 7 | 0 | 0 |
28 | 35 | 35 | 34 |
25 | 33 | 6 | 0 |
40 | 0 | 0 | 0 |
34 | 1 | 0 | 0 |
22 | 23 | 6 | 40 |
31 | 38 | 35 | 35 |
G:=sub<GL(4,GF(41))| [40,17,0,17,40,17,40,35,39,0,18,3,25,25,1,7],[0,1,0,1,0,1,0,0,34,39,40,34,1,40,0,0],[40,34,28,25,7,7,35,33,0,0,35,6,0,0,34,0],[40,34,22,31,0,1,23,38,0,0,6,35,0,0,40,35] >;
D4:6D10 in GAP, Magma, Sage, TeX
D_4\rtimes_6D_{10}
% in TeX
G:=Group("D4:6D10");
// GroupNames label
G:=SmallGroup(160,219);
// by ID
G=gap.SmallGroup(160,219);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,188,579,4613]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^10=d^2=1,b*a*b=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations