Extensions 1→N→G→Q→1 with N=C2xQ8:2D5 and Q=C2

Direct product G=NxQ with N=C2xQ8:2D5 and Q=C2
dρLabelID
C22xQ8:2D5160C2^2xQ8:2D5320,1616

Semidirect products G=N:Q with N=C2xQ8:2D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xQ8:2D5):1C2 = D20:4D4φ: C2/C1C2 ⊆ Out C2xQ8:2D5160(C2xQ8:2D5):1C2320,438
(C2xQ8:2D5):2C2 = D20:7D4φ: C2/C1C2 ⊆ Out C2xQ8:2D5160(C2xQ8:2D5):2C2320,799
(C2xQ8:2D5):3C2 = Q8:5D20φ: C2/C1C2 ⊆ Out C2xQ8:2D5160(C2xQ8:2D5):3C2320,1248
(C2xQ8:2D5):4C2 = Q8:6D20φ: C2/C1C2 ⊆ Out C2xQ8:2D5160(C2xQ8:2D5):4C2320,1249
(C2xQ8:2D5):5C2 = C4:C4:26D10φ: C2/C1C2 ⊆ Out C2xQ8:2D580(C2xQ8:2D5):5C2320,1299
(C2xQ8:2D5):6C2 = C10.172- 1+4φ: C2/C1C2 ⊆ Out C2xQ8:2D5160(C2xQ8:2D5):6C2320,1301
(C2xQ8:2D5):7C2 = D20:21D4φ: C2/C1C2 ⊆ Out C2xQ8:2D580(C2xQ8:2D5):7C2320,1302
(C2xQ8:2D5):8C2 = D20:22D4φ: C2/C1C2 ⊆ Out C2xQ8:2D5160(C2xQ8:2D5):8C2320,1303
(C2xQ8:2D5):9C2 = C42.233D10φ: C2/C1C2 ⊆ Out C2xQ8:2D5160(C2xQ8:2D5):9C2320,1340
(C2xQ8:2D5):10C2 = C42:18D10φ: C2/C1C2 ⊆ Out C2xQ8:2D580(C2xQ8:2D5):10C2320,1346
(C2xQ8:2D5):11C2 = D20:10D4φ: C2/C1C2 ⊆ Out C2xQ8:2D580(C2xQ8:2D5):11C2320,1348
(C2xQ8:2D5):12C2 = C42.240D10φ: C2/C1C2 ⊆ Out C2xQ8:2D5160(C2xQ8:2D5):12C2320,1397
(C2xQ8:2D5):13C2 = D20:12D4φ: C2/C1C2 ⊆ Out C2xQ8:2D5160(C2xQ8:2D5):13C2320,1398
(C2xQ8:2D5):14C2 = C2xD40:C2φ: C2/C1C2 ⊆ Out C2xQ8:2D580(C2xQ8:2D5):14C2320,1431
(C2xQ8:2D5):15C2 = C2xSD16:3D5φ: C2/C1C2 ⊆ Out C2xQ8:2D5160(C2xQ8:2D5):15C2320,1433
(C2xQ8:2D5):16C2 = C2xQ8.D10φ: C2/C1C2 ⊆ Out C2xQ8:2D5160(C2xQ8:2D5):16C2320,1437
(C2xQ8:2D5):17C2 = D40:C22φ: C2/C1C2 ⊆ Out C2xQ8:2D5808+(C2xQ8:2D5):17C2320,1449
(C2xQ8:2D5):18C2 = C10.452- 1+4φ: C2/C1C2 ⊆ Out C2xQ8:2D5160(C2xQ8:2D5):18C2320,1489
(C2xQ8:2D5):19C2 = C10.1482+ 1+4φ: C2/C1C2 ⊆ Out C2xQ8:2D5160(C2xQ8:2D5):19C2320,1506
(C2xQ8:2D5):20C2 = C2xQ8.10D10φ: C2/C1C2 ⊆ Out C2xQ8:2D5160(C2xQ8:2D5):20C2320,1617
(C2xQ8:2D5):21C2 = C2xD4:8D10φ: C2/C1C2 ⊆ Out C2xQ8:2D580(C2xQ8:2D5):21C2320,1619
(C2xQ8:2D5):22C2 = D20.39C23φ: C2/C1C2 ⊆ Out C2xQ8:2D5808+(C2xQ8:2D5):22C2320,1625
(C2xQ8:2D5):23C2 = C2xD5xC4oD4φ: trivial image80(C2xQ8:2D5):23C2320,1618

Non-split extensions G=N.Q with N=C2xQ8:2D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xQ8:2D5).1C2 = M4(2).21D10φ: C2/C1C2 ⊆ Out C2xQ8:2D5808+(C2xQ8:2D5).1C2320,378
(C2xQ8:2D5).2C2 = Q8:(C4xD5)φ: C2/C1C2 ⊆ Out C2xQ8:2D5160(C2xQ8:2D5).2C2320,430
(C2xQ8:2D5).3C2 = Q8:2D5:C4φ: C2/C1C2 ⊆ Out C2xQ8:2D5160(C2xQ8:2D5).3C2320,431
(C2xQ8:2D5).4C2 = Q8.D20φ: C2/C1C2 ⊆ Out C2xQ8:2D5160(C2xQ8:2D5).4C2320,437
(C2xQ8:2D5).5C2 = D20.17D4φ: C2/C1C2 ⊆ Out C2xQ8:2D5160(C2xQ8:2D5).5C2320,814
(C2xQ8:2D5).6C2 = C42.126D10φ: C2/C1C2 ⊆ Out C2xQ8:2D5160(C2xQ8:2D5).6C2320,1246
(C2xQ8:2D5).7C2 = C42.171D10φ: C2/C1C2 ⊆ Out C2xQ8:2D5160(C2xQ8:2D5).7C2320,1396
(C2xQ8:2D5).8C2 = C2xQ16:D5φ: C2/C1C2 ⊆ Out C2xQ8:2D5160(C2xQ8:2D5).8C2320,1436
(C2xQ8:2D5).9C2 = C2xQ8:2F5φ: C2/C1C2 ⊆ Out C2xQ8:2D580(C2xQ8:2D5).9C2320,1121
(C2xQ8:2D5).10C2 = (C2xQ8):6F5φ: C2/C1C2 ⊆ Out C2xQ8:2D5808+(C2xQ8:2D5).10C2320,1122
(C2xQ8:2D5).11C2 = (C2xQ8):7F5φ: C2/C1C2 ⊆ Out C2xQ8:2D5808+(C2xQ8:2D5).11C2320,1123
(C2xQ8:2D5).12C2 = (C2xQ8).5F5φ: C2/C1C2 ⊆ Out C2xQ8:2D5160(C2xQ8:2D5).12C2320,1125
(C2xQ8:2D5).13C2 = C2xQ8.F5φ: C2/C1C2 ⊆ Out C2xQ8:2D5160(C2xQ8:2D5).13C2320,1597
(C2xQ8:2D5).14C2 = Dic5.20C24φ: C2/C1C2 ⊆ Out C2xQ8:2D5808+(C2xQ8:2D5).14C2320,1598
(C2xQ8:2D5).15C2 = C4xQ8:2D5φ: trivial image160(C2xQ8:2D5).15C2320,1245

׿
x
:
Z
F
o
wr
Q
<