Copied to
clipboard

G = C2xD40:C2order 320 = 26·5

Direct product of C2 and D40:C2

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2xD40:C2, C40:4C23, SD16:8D10, D20:2C23, C20.6C24, D40:20C22, (C2xC8):10D10, C4.43(D4xD5), C8:4(C22xD5), (C2xD40):26C2, C5:2C8:2C23, (C2xQ8):21D10, (C2xSD16):4D5, (C4xD5).15D4, C20.81(C2xD4), (D4xD5):6C22, Q8:D5:8C22, (C5xQ8):2C23, Q8:2(C22xD5), C4.6(C23xD5), C10:3(C8:C22), (C2xC40):13C22, D4:D5:10C22, (C10xSD16):5C2, D10.84(C2xD4), C8:D5:8C22, D4.4(C22xD5), (C5xD4).4C23, (C4xD5).3C23, (C2xD4).182D10, (C2xD20):33C22, Dic5.95(C2xD4), (Q8xC10):18C22, Q8:2D5:5C22, (C5xSD16):8C22, C22.139(D4xD5), (C2xC20).523C23, (C2xDic5).248D4, (C22xD5).135D4, C10.107(C22xD4), (D4xC10).164C22, (C2xD4xD5):23C2, C5:3(C2xC8:C22), C2.80(C2xD4xD5), (C2xD4:D5):27C2, (C2xC8:D5):4C2, (C2xQ8:D5):26C2, (C2xC5:2C8):15C22, (C2xQ8:2D5):14C2, (C2xC10).396(C2xD4), (C2xC4xD5).165C22, (C2xC4).612(C22xD5), SmallGroup(320,1431)

Series: Derived Chief Lower central Upper central

C1C20 — C2xD40:C2
C1C5C10C20C4xD5C2xC4xD5C2xD4xD5 — C2xD40:C2
C5C10C20 — C2xD40:C2
C1C22C2xC4C2xSD16

Generators and relations for C2xD40:C2
 G = < a,b,c,d | a2=b40=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b-1, dbd=b11, cd=dc >

Subgroups: 1374 in 298 conjugacy classes, 103 normal (33 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, D5, C10, C10, C10, C2xC8, C2xC8, M4(2), D8, SD16, SD16, C22xC4, C2xD4, C2xD4, C2xQ8, C4oD4, C24, Dic5, C20, C20, D10, D10, C2xC10, C2xC10, C2xM4(2), C2xD8, C2xSD16, C2xSD16, C8:C22, C22xD4, C2xC4oD4, C5:2C8, C40, C4xD5, C4xD5, D20, D20, C2xDic5, C5:D4, C2xC20, C2xC20, C5xD4, C5xD4, C5xQ8, C5xQ8, C22xD5, C22xD5, C22xC10, C2xC8:C22, C8:D5, D40, C2xC5:2C8, D4:D5, Q8:D5, C2xC40, C5xSD16, C2xC4xD5, C2xC4xD5, C2xD20, C2xD20, D4xD5, D4xD5, Q8:2D5, Q8:2D5, C2xC5:D4, D4xC10, Q8xC10, C23xD5, C2xC8:D5, C2xD40, D40:C2, C2xD4:D5, C2xQ8:D5, C10xSD16, C2xD4xD5, C2xQ8:2D5, C2xD40:C2
Quotients: C1, C2, C22, D4, C23, D5, C2xD4, C24, D10, C8:C22, C22xD4, C22xD5, C2xC8:C22, D4xD5, C23xD5, D40:C2, C2xD4xD5, C2xD40:C2

Smallest permutation representation of C2xD40:C2
On 80 points
Generators in S80
(1 59)(2 60)(3 61)(4 62)(5 63)(6 64)(7 65)(8 66)(9 67)(10 68)(11 69)(12 70)(13 71)(14 72)(15 73)(16 74)(17 75)(18 76)(19 77)(20 78)(21 79)(22 80)(23 41)(24 42)(25 43)(26 44)(27 45)(28 46)(29 47)(30 48)(31 49)(32 50)(33 51)(34 52)(35 53)(36 54)(37 55)(38 56)(39 57)(40 58)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 40)(17 39)(18 38)(19 37)(20 36)(21 35)(22 34)(23 33)(24 32)(25 31)(26 30)(27 29)(41 51)(42 50)(43 49)(44 48)(45 47)(52 80)(53 79)(54 78)(55 77)(56 76)(57 75)(58 74)(59 73)(60 72)(61 71)(62 70)(63 69)(64 68)(65 67)
(1 11)(2 22)(3 33)(5 15)(6 26)(7 37)(9 19)(10 30)(13 23)(14 34)(17 27)(18 38)(21 31)(25 35)(29 39)(41 71)(43 53)(44 64)(45 75)(47 57)(48 68)(49 79)(51 61)(52 72)(55 65)(56 76)(59 69)(60 80)(63 73)(67 77)

G:=sub<Sym(80)| (1,59)(2,60)(3,61)(4,62)(5,63)(6,64)(7,65)(8,66)(9,67)(10,68)(11,69)(12,70)(13,71)(14,72)(15,73)(16,74)(17,75)(18,76)(19,77)(20,78)(21,79)(22,80)(23,41)(24,42)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,49)(32,50)(33,51)(34,52)(35,53)(36,54)(37,55)(38,56)(39,57)(40,58), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,40)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(41,51)(42,50)(43,49)(44,48)(45,47)(52,80)(53,79)(54,78)(55,77)(56,76)(57,75)(58,74)(59,73)(60,72)(61,71)(62,70)(63,69)(64,68)(65,67), (1,11)(2,22)(3,33)(5,15)(6,26)(7,37)(9,19)(10,30)(13,23)(14,34)(17,27)(18,38)(21,31)(25,35)(29,39)(41,71)(43,53)(44,64)(45,75)(47,57)(48,68)(49,79)(51,61)(52,72)(55,65)(56,76)(59,69)(60,80)(63,73)(67,77)>;

G:=Group( (1,59)(2,60)(3,61)(4,62)(5,63)(6,64)(7,65)(8,66)(9,67)(10,68)(11,69)(12,70)(13,71)(14,72)(15,73)(16,74)(17,75)(18,76)(19,77)(20,78)(21,79)(22,80)(23,41)(24,42)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,49)(32,50)(33,51)(34,52)(35,53)(36,54)(37,55)(38,56)(39,57)(40,58), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,40)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(41,51)(42,50)(43,49)(44,48)(45,47)(52,80)(53,79)(54,78)(55,77)(56,76)(57,75)(58,74)(59,73)(60,72)(61,71)(62,70)(63,69)(64,68)(65,67), (1,11)(2,22)(3,33)(5,15)(6,26)(7,37)(9,19)(10,30)(13,23)(14,34)(17,27)(18,38)(21,31)(25,35)(29,39)(41,71)(43,53)(44,64)(45,75)(47,57)(48,68)(49,79)(51,61)(52,72)(55,65)(56,76)(59,69)(60,80)(63,73)(67,77) );

G=PermutationGroup([[(1,59),(2,60),(3,61),(4,62),(5,63),(6,64),(7,65),(8,66),(9,67),(10,68),(11,69),(12,70),(13,71),(14,72),(15,73),(16,74),(17,75),(18,76),(19,77),(20,78),(21,79),(22,80),(23,41),(24,42),(25,43),(26,44),(27,45),(28,46),(29,47),(30,48),(31,49),(32,50),(33,51),(34,52),(35,53),(36,54),(37,55),(38,56),(39,57),(40,58)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,40),(17,39),(18,38),(19,37),(20,36),(21,35),(22,34),(23,33),(24,32),(25,31),(26,30),(27,29),(41,51),(42,50),(43,49),(44,48),(45,47),(52,80),(53,79),(54,78),(55,77),(56,76),(57,75),(58,74),(59,73),(60,72),(61,71),(62,70),(63,69),(64,68),(65,67)], [(1,11),(2,22),(3,33),(5,15),(6,26),(7,37),(9,19),(10,30),(13,23),(14,34),(17,27),(18,38),(21,31),(25,35),(29,39),(41,71),(43,53),(44,64),(45,75),(47,57),(48,68),(49,79),(51,61),(52,72),(55,65),(56,76),(59,69),(60,80),(63,73),(67,77)]])

50 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C4D4E4F5A5B8A8B8C8D10A···10F10G10H10I10J20A20B20C20D20E20F20G20H40A···40H
order12222222222244444455888810···1010101010202020202020202040···40
size11114410102020202022441010224420202···28888444488884···4

50 irreducible representations

dim111111111222222224444
type+++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2D4D4D4D5D10D10D10D10C8:C22D4xD5D4xD5D40:C2
kernelC2xD40:C2C2xC8:D5C2xD40D40:C2C2xD4:D5C2xQ8:D5C10xSD16C2xD4xD5C2xQ8:2D5C4xD5C2xDic5C22xD5C2xSD16C2xC8SD16C2xD4C2xQ8C10C4C22C2
# reps111811111211228222228

Matrix representation of C2xD40:C2 in GL6(F41)

4000000
0400000
0040000
0004000
0000400
0000040
,
7350000
700000
0026262626
0015341534
00282800
00132400
,
4010000
010000
00040039
00400390
000001
000010
,
4000000
0400000
001020
000102
0000400
0000040

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[7,7,0,0,0,0,35,0,0,0,0,0,0,0,26,15,28,13,0,0,26,34,28,24,0,0,26,15,0,0,0,0,26,34,0,0],[40,0,0,0,0,0,1,1,0,0,0,0,0,0,0,40,0,0,0,0,40,0,0,0,0,0,0,39,0,1,0,0,39,0,1,0],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,2,0,40,0,0,0,0,2,0,40] >;

C2xD40:C2 in GAP, Magma, Sage, TeX

C_2\times D_{40}\rtimes C_2
% in TeX

G:=Group("C2xD40:C2");
// GroupNames label

G:=SmallGroup(320,1431);
// by ID

G=gap.SmallGroup(320,1431);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,1123,185,136,438,235,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^40=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d=b^11,c*d=d*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<