Extensions 1→N→G→Q→1 with N=C5 and Q=M4(2)⋊4C4

Direct product G=N×Q with N=C5 and Q=M4(2)⋊4C4
dρLabelID
C5×M4(2)⋊4C4804C5xM4(2):4C4320,149

Semidirect products G=N:Q with N=C5 and Q=M4(2)⋊4C4
extensionφ:Q→Aut NdρLabelID
C51(M4(2)⋊4C4) = C22⋊C4.F5φ: M4(2)⋊4C4/C22⋊C4C4 ⊆ Aut C5808-C5:1(M4(2):4C4)320,205
C52(M4(2)⋊4C4) = (C2×C8)⋊F5φ: M4(2)⋊4C4/C2×C8C4 ⊆ Aut C5804C5:2(M4(2):4C4)320,232
C53(M4(2)⋊4C4) = M4(2)⋊4F5φ: M4(2)⋊4C4/M4(2)C4 ⊆ Aut C5808C5:3(M4(2):4C4)320,240
C54(M4(2)⋊4C4) = C20.60(C4⋊C4)φ: M4(2)⋊4C4/C42⋊C2C2 ⊆ Aut C5804C5:4(M4(2):4C4)320,91
C55(M4(2)⋊4C4) = (C2×C40)⋊C4φ: M4(2)⋊4C4/C2×M4(2)C2 ⊆ Aut C5804C5:5(M4(2):4C4)320,114
C56(M4(2)⋊4C4) = M4(2)⋊4Dic5φ: M4(2)⋊4C4/C2×M4(2)C2 ⊆ Aut C5804C5:6(M4(2):4C4)320,117


׿
×
𝔽