Extensions 1→N→G→Q→1 with N=D20.2C4 and Q=C2

Direct product G=N×Q with N=D20.2C4 and Q=C2
dρLabelID
C2×D20.2C4160C2xD20.2C4320,1416

Semidirect products G=N:Q with N=D20.2C4 and Q=C2
extensionφ:Q→Out NdρLabelID
D20.2C41C2 = D85D10φ: C2/C1C2 ⊆ Out D20.2C4808+D20.2C4:1C2320,1446
D20.2C42C2 = D86D10φ: C2/C1C2 ⊆ Out D20.2C4808-D20.2C4:2C2320,1447
D20.2C43C2 = C40.C23φ: C2/C1C2 ⊆ Out D20.2C4808+D20.2C4:3C2320,1450
D20.2C44C2 = D20.44D4φ: C2/C1C2 ⊆ Out D20.2C41608-D20.2C4:4C2320,1451
D20.2C45C2 = D20.2D4φ: C2/C1C2 ⊆ Out D20.2C4808-D20.2C4:5C2320,375
D20.2C46C2 = D20.3D4φ: C2/C1C2 ⊆ Out D20.2C4808+D20.2C4:6C2320,376
D20.2C47C2 = D20.6D4φ: C2/C1C2 ⊆ Out D20.2C4808+D20.2C4:7C2320,381
D20.2C48C2 = M4(2).22D10φ: C2/C1C2 ⊆ Out D20.2C4804D20.2C4:8C2320,450
D20.2C49C2 = C42.196D10φ: C2/C1C2 ⊆ Out D20.2C4804D20.2C4:9C2320,451
D20.2C410C2 = D4016C4φ: C2/C1C2 ⊆ Out D20.2C4804D20.2C4:10C2320,521
D20.2C411C2 = D4013C4φ: C2/C1C2 ⊆ Out D20.2C4804D20.2C4:11C2320,522
D20.2C412C2 = C40.47C23φ: C2/C1C2 ⊆ Out D20.2C4804D20.2C4:12C2320,1417
D20.2C413C2 = C20.72C24φ: C2/C1C2 ⊆ Out D20.2C4804D20.2C4:13C2320,1422
D20.2C414C2 = D5×C8○D4φ: trivial image804D20.2C4:14C2320,1421

Non-split extensions G=N.Q with N=D20.2C4 and Q=C2
extensionφ:Q→Out NdρLabelID
D20.2C4.1C2 = D20.C8φ: C2/C1C2 ⊆ Out D20.2C41608D20.2C4.1C2320,236
D20.2C4.2C2 = D20.7D4φ: C2/C1C2 ⊆ Out D20.2C41608-D20.2C4.2C2320,382
D20.2C4.3C2 = Dic10.C8φ: C2/C1C2 ⊆ Out D20.2C41608D20.2C4.3C2320,1063

׿
×
𝔽