Copied to
clipboard

G = D4016C4order 320 = 26·5

10th semidirect product of D40 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4016C4, Dic2016C4, M4(2).26D10, C40⋊C28C4, C408C41C2, C8.11(C4×D5), C56(C8.26D4), C40.70(C2×C4), (C2×C8).69D10, C4.212(D4×D5), C10.85(C4×D4), C8.C44D5, C52C8.51D4, D207C47C2, D20.24(C2×C4), C20.371(C2×D4), D407C2.4C2, (C2×C40).41C22, D20.2C410C2, (C2×C20).310C23, C20.113(C22×C4), Dic10.25(C2×C4), C4○D20.17C22, C2.15(D208C4), C22.1(Q82D5), (C4×Dic5).46C22, (C5×M4(2)).20C22, C4.46(C2×C4×D5), (C5×C8.C4)⋊4C2, (C2×C10).1(C4○D4), (C2×C52C8).78C22, (C2×C4).413(C22×D5), SmallGroup(320,521)

Series: Derived Chief Lower central Upper central

C1C20 — D4016C4
C1C5C10C20C2×C20C4○D20D407C2 — D4016C4
C5C10C20 — D4016C4
C1C4C2×C4C8.C4

Generators and relations for D4016C4
 G = < a,b,c | a40=b2=c4=1, bab=a-1, cac-1=a29, cbc-1=a18b >

Subgroups: 390 in 104 conjugacy classes, 45 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, Q8, D5, C10, C10, C42, C2×C8, C2×C8, M4(2), M4(2), D8, SD16, Q16, C4○D4, Dic5, C20, D10, C2×C10, C8⋊C4, C4≀C2, C8.C4, C8○D4, C4○D8, C52C8, C40, C40, Dic10, C4×D5, D20, C2×Dic5, C5⋊D4, C2×C20, C8.26D4, C8×D5, C8⋊D5, C40⋊C2, D40, Dic20, C2×C52C8, C4×Dic5, C2×C40, C5×M4(2), C4○D20, C408C4, D207C4, C5×C8.C4, D407C2, D20.2C4, D4016C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22×C4, C2×D4, C4○D4, D10, C4×D4, C4×D5, C22×D5, C8.26D4, C2×C4×D5, D4×D5, Q82D5, D208C4, D4016C4

Smallest permutation representation of D4016C4
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 69)(2 68)(3 67)(4 66)(5 65)(6 64)(7 63)(8 62)(9 61)(10 60)(11 59)(12 58)(13 57)(14 56)(15 55)(16 54)(17 53)(18 52)(19 51)(20 50)(21 49)(22 48)(23 47)(24 46)(25 45)(26 44)(27 43)(28 42)(29 41)(30 80)(31 79)(32 78)(33 77)(34 76)(35 75)(36 74)(37 73)(38 72)(39 71)(40 70)
(1 11 21 31)(2 40 22 20)(3 29 23 9)(4 18 24 38)(5 7 25 27)(6 36 26 16)(8 14 28 34)(10 32 30 12)(13 39 33 19)(15 17 35 37)(41 49)(42 78)(43 67)(44 56)(46 74)(47 63)(48 52)(50 70)(51 59)(53 77)(54 66)(57 73)(58 62)(60 80)(61 69)(64 76)(68 72)(71 79)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,69)(2,68)(3,67)(4,66)(5,65)(6,64)(7,63)(8,62)(9,61)(10,60)(11,59)(12,58)(13,57)(14,56)(15,55)(16,54)(17,53)(18,52)(19,51)(20,50)(21,49)(22,48)(23,47)(24,46)(25,45)(26,44)(27,43)(28,42)(29,41)(30,80)(31,79)(32,78)(33,77)(34,76)(35,75)(36,74)(37,73)(38,72)(39,71)(40,70), (1,11,21,31)(2,40,22,20)(3,29,23,9)(4,18,24,38)(5,7,25,27)(6,36,26,16)(8,14,28,34)(10,32,30,12)(13,39,33,19)(15,17,35,37)(41,49)(42,78)(43,67)(44,56)(46,74)(47,63)(48,52)(50,70)(51,59)(53,77)(54,66)(57,73)(58,62)(60,80)(61,69)(64,76)(68,72)(71,79)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,69)(2,68)(3,67)(4,66)(5,65)(6,64)(7,63)(8,62)(9,61)(10,60)(11,59)(12,58)(13,57)(14,56)(15,55)(16,54)(17,53)(18,52)(19,51)(20,50)(21,49)(22,48)(23,47)(24,46)(25,45)(26,44)(27,43)(28,42)(29,41)(30,80)(31,79)(32,78)(33,77)(34,76)(35,75)(36,74)(37,73)(38,72)(39,71)(40,70), (1,11,21,31)(2,40,22,20)(3,29,23,9)(4,18,24,38)(5,7,25,27)(6,36,26,16)(8,14,28,34)(10,32,30,12)(13,39,33,19)(15,17,35,37)(41,49)(42,78)(43,67)(44,56)(46,74)(47,63)(48,52)(50,70)(51,59)(53,77)(54,66)(57,73)(58,62)(60,80)(61,69)(64,76)(68,72)(71,79) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,69),(2,68),(3,67),(4,66),(5,65),(6,64),(7,63),(8,62),(9,61),(10,60),(11,59),(12,58),(13,57),(14,56),(15,55),(16,54),(17,53),(18,52),(19,51),(20,50),(21,49),(22,48),(23,47),(24,46),(25,45),(26,44),(27,43),(28,42),(29,41),(30,80),(31,79),(32,78),(33,77),(34,76),(35,75),(36,74),(37,73),(38,72),(39,71),(40,70)], [(1,11,21,31),(2,40,22,20),(3,29,23,9),(4,18,24,38),(5,7,25,27),(6,36,26,16),(8,14,28,34),(10,32,30,12),(13,39,33,19),(15,17,35,37),(41,49),(42,78),(43,67),(44,56),(46,74),(47,63),(48,52),(50,70),(51,59),(53,77),(54,66),(57,73),(58,62),(60,80),(61,69),(64,76),(68,72),(71,79)]])

50 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G5A5B8A···8F8G8H8I8J10A10B10C10D20A20B20C20D20E20F40A···40H40I···40P
order122224444444558···888881010101020202020202040···4040···40
size112202011220202020224···41010101022442222444···48···8

50 irreducible representations

dim1111111112222224444
type++++++++++++
imageC1C2C2C2C2C2C4C4C4D4D5C4○D4D10D10C4×D5C8.26D4D4×D5Q82D5D4016C4
kernelD4016C4C408C4D207C4C5×C8.C4D407C2D20.2C4C40⋊C2D40Dic20C52C8C8.C4C2×C10C2×C8M4(2)C8C5C4C22C1
# reps1121124222222482228

Matrix representation of D4016C4 in GL6(𝔽41)

660000
3510000
0031010
00174001
00140100
00238241
,
660000
1350000
0004000
0040000
00302209
00717320
,
900000
13320000
0032000
000100
0025090
00132040

G:=sub<GL(6,GF(41))| [6,35,0,0,0,0,6,1,0,0,0,0,0,0,31,17,14,23,0,0,0,40,0,8,0,0,1,0,10,24,0,0,0,1,0,1],[6,1,0,0,0,0,6,35,0,0,0,0,0,0,0,40,30,7,0,0,40,0,22,17,0,0,0,0,0,32,0,0,0,0,9,0],[9,13,0,0,0,0,0,32,0,0,0,0,0,0,32,0,25,13,0,0,0,1,0,2,0,0,0,0,9,0,0,0,0,0,0,40] >;

D4016C4 in GAP, Magma, Sage, TeX

D_{40}\rtimes_{16}C_4
% in TeX

G:=Group("D40:16C4");
// GroupNames label

G:=SmallGroup(320,521);
// by ID

G=gap.SmallGroup(320,521);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,120,219,58,136,1684,438,102,12550]);
// Polycyclic

G:=Group<a,b,c|a^40=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^29,c*b*c^-1=a^18*b>;
// generators/relations

׿
×
𝔽