Extensions 1→N→G→Q→1 with N=D5⋊M4(2) and Q=C2

Direct product G=N×Q with N=D5⋊M4(2) and Q=C2
dρLabelID
C2×D5⋊M4(2)80C2xD5:M4(2)320,1589

Semidirect products G=N:Q with N=D5⋊M4(2) and Q=C2
extensionφ:Q→Out NdρLabelID
D5⋊M4(2)⋊1C2 = (D4×C10)⋊C4φ: C2/C1C2 ⊆ Out D5⋊M4(2)408+D5:M4(2):1C2320,1105
D5⋊M4(2)⋊2C2 = (C2×D4)⋊6F5φ: C2/C1C2 ⊆ Out D5⋊M4(2)808-D5:M4(2):2C2320,1107
D5⋊M4(2)⋊3C2 = D5⋊(C4.D4)φ: C2/C1C2 ⊆ Out D5⋊M4(2)408+D5:M4(2):3C2320,1116
D5⋊M4(2)⋊4C2 = (C2×Q8)⋊6F5φ: C2/C1C2 ⊆ Out D5⋊M4(2)808+D5:M4(2):4C2320,1122
D5⋊M4(2)⋊5C2 = D5⋊C4≀C2φ: C2/C1C2 ⊆ Out D5⋊M4(2)408D5:M4(2):5C2320,1130
D5⋊M4(2)⋊6C2 = C4○D4⋊F5φ: C2/C1C2 ⊆ Out D5⋊M4(2)408D5:M4(2):6C2320,1131
D5⋊M4(2)⋊7C2 = Dic5.C24φ: C2/C1C2 ⊆ Out D5⋊M4(2)808-D5:M4(2):7C2320,1594
D5⋊M4(2)⋊8C2 = Dic5.20C24φ: C2/C1C2 ⊆ Out D5⋊M4(2)808+D5:M4(2):8C2320,1598
D5⋊M4(2)⋊9C2 = Dic5.21C24φ: C2/C1C2 ⊆ Out D5⋊M4(2)808D5:M4(2):9C2320,1601
D5⋊M4(2)⋊10C2 = Dic5.22C24φ: C2/C1C2 ⊆ Out D5⋊M4(2)808D5:M4(2):10C2320,1602
D5⋊M4(2)⋊11C2 = (C4×D5).D4φ: C2/C1C2 ⊆ Out D5⋊M4(2)804D5:M4(2):11C2320,1099

Non-split extensions G=N.Q with N=D5⋊M4(2) and Q=C2
extensionφ:Q→Out NdρLabelID
D5⋊M4(2).1C2 = M4(2)⋊F5φ: C2/C1C2 ⊆ Out D5⋊M4(2)408D5:M4(2).1C2320,237
D5⋊M4(2).2C2 = M4(2).F5φ: C2/C1C2 ⊆ Out D5⋊M4(2)808D5:M4(2).2C2320,239
D5⋊M4(2).3C2 = M4(2)×F5φ: C2/C1C2 ⊆ Out D5⋊M4(2)408D5:M4(2).3C2320,1064
D5⋊M4(2).4C2 = M4(2).1F5φ: C2/C1C2 ⊆ Out D5⋊M4(2)808D5:M4(2).4C2320,1067
D5⋊M4(2).5C2 = (C2×Q8)⋊4F5φ: C2/C1C2 ⊆ Out D5⋊M4(2)808-D5:M4(2).5C2320,1120
D5⋊M4(2).6C2 = (C2×Q8).7F5φ: C2/C1C2 ⊆ Out D5⋊M4(2)808-D5:M4(2).6C2320,1127
D5⋊M4(2).7C2 = C426F5φ: C2/C1C2 ⊆ Out D5⋊M4(2)404D5:M4(2).7C2320,200
D5⋊M4(2).8C2 = C423F5φ: C2/C1C2 ⊆ Out D5⋊M4(2)804D5:M4(2).8C2320,201
D5⋊M4(2).9C2 = (C2×C8)⋊F5φ: C2/C1C2 ⊆ Out D5⋊M4(2)804D5:M4(2).9C2320,232
D5⋊M4(2).10C2 = C20.25C42φ: C2/C1C2 ⊆ Out D5⋊M4(2)804D5:M4(2).10C2320,235
D5⋊M4(2).11C2 = (C8×D5).C4φ: C2/C1C2 ⊆ Out D5⋊M4(2)804D5:M4(2).11C2320,1062
D5⋊M4(2).12C2 = C20.12C42φ: trivial image804D5:M4(2).12C2320,1056

׿
×
𝔽