direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×D5⋊M4(2), D10⋊11M4(2), Dic5.16C24, C5⋊C8⋊2C23, D5⋊(C2×M4(2)), D5⋊C8⋊9C22, C2.5(C23×F5), C10⋊2(C2×M4(2)), C10.3(C23×C4), C4.F5⋊13C22, C5⋊2(C22×M4(2)), (C22×C4).25F5, C23.53(C2×F5), C4.58(C22×F5), (C22×C20).29C4, C20.98(C22×C4), (C23×D5).19C4, (C4×D5).91C23, C22.F5⋊7C22, D10.45(C22×C4), C22.19(C22×F5), Dic5.45(C22×C4), (C2×Dic5).363C23, (C22×Dic5).283C22, (C2×C4×D5).40C4, (C2×D5⋊C8)⋊13C2, (C2×C5⋊C8)⋊10C22, (C2×C4.F5)⋊14C2, (C4×D5).97(C2×C4), (C2×C4).173(C2×F5), (D5×C22×C4).32C2, (C2×C20).152(C2×C4), (C2×C4×D5).405C22, (C2×C22.F5)⋊12C2, (C22×C10).79(C2×C4), (C2×C10).97(C22×C4), (C2×Dic5).199(C2×C4), (C22×D5).133(C2×C4), SmallGroup(320,1589)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — Dic5 — C5⋊C8 — C2×C5⋊C8 — C2×D5⋊C8 — C2×D5⋊M4(2) |
Generators and relations for C2×D5⋊M4(2)
G = < a,b,c,d,e | a2=b5=c2=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, dbd-1=b3, be=eb, dcd-1=b2c, ce=ec, ede=d5 >
Subgroups: 906 in 298 conjugacy classes, 148 normal (28 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, C23, C23, D5, D5, C10, C10, C10, C2×C8, M4(2), C22×C4, C22×C4, C24, Dic5, Dic5, C20, D10, D10, C2×C10, C2×C10, C2×C10, C22×C8, C2×M4(2), C23×C4, C5⋊C8, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×D5, C22×D5, C22×C10, C22×M4(2), D5⋊C8, C4.F5, C2×C5⋊C8, C22.F5, C2×C4×D5, C2×C4×D5, C22×Dic5, C22×C20, C23×D5, C2×D5⋊C8, C2×C4.F5, D5⋊M4(2), C2×C22.F5, D5×C22×C4, C2×D5⋊M4(2)
Quotients: C1, C2, C4, C22, C2×C4, C23, M4(2), C22×C4, C24, F5, C2×M4(2), C23×C4, C2×F5, C22×M4(2), C22×F5, D5⋊M4(2), C23×F5, C2×D5⋊M4(2)
(1 79)(2 80)(3 73)(4 74)(5 75)(6 76)(7 77)(8 78)(9 20)(10 21)(11 22)(12 23)(13 24)(14 17)(15 18)(16 19)(25 70)(26 71)(27 72)(28 65)(29 66)(30 67)(31 68)(32 69)(33 47)(34 48)(35 41)(36 42)(37 43)(38 44)(39 45)(40 46)(49 59)(50 60)(51 61)(52 62)(53 63)(54 64)(55 57)(56 58)
(1 58 15 40 67)(2 33 59 68 16)(3 69 34 9 60)(4 10 70 61 35)(5 62 11 36 71)(6 37 63 72 12)(7 65 38 13 64)(8 14 66 57 39)(17 29 55 45 78)(18 46 30 79 56)(19 80 47 49 31)(20 50 73 32 48)(21 25 51 41 74)(22 42 26 75 52)(23 76 43 53 27)(24 54 77 28 44)
(1 71)(2 12)(3 64)(4 39)(5 67)(6 16)(7 60)(8 35)(9 65)(10 57)(11 15)(13 69)(14 61)(17 51)(18 22)(19 76)(20 28)(21 55)(23 80)(24 32)(25 29)(26 79)(27 47)(30 75)(31 43)(33 72)(34 38)(36 58)(37 68)(40 62)(41 78)(42 56)(44 48)(45 74)(46 52)(49 53)(50 77)(54 73)(59 63)(66 70)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(1 75)(2 80)(3 77)(4 74)(5 79)(6 76)(7 73)(8 78)(9 24)(10 21)(11 18)(12 23)(13 20)(14 17)(15 22)(16 19)(25 70)(26 67)(27 72)(28 69)(29 66)(30 71)(31 68)(32 65)(33 47)(34 44)(35 41)(36 46)(37 43)(38 48)(39 45)(40 42)(49 59)(50 64)(51 61)(52 58)(53 63)(54 60)(55 57)(56 62)
G:=sub<Sym(80)| (1,79)(2,80)(3,73)(4,74)(5,75)(6,76)(7,77)(8,78)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19)(25,70)(26,71)(27,72)(28,65)(29,66)(30,67)(31,68)(32,69)(33,47)(34,48)(35,41)(36,42)(37,43)(38,44)(39,45)(40,46)(49,59)(50,60)(51,61)(52,62)(53,63)(54,64)(55,57)(56,58), (1,58,15,40,67)(2,33,59,68,16)(3,69,34,9,60)(4,10,70,61,35)(5,62,11,36,71)(6,37,63,72,12)(7,65,38,13,64)(8,14,66,57,39)(17,29,55,45,78)(18,46,30,79,56)(19,80,47,49,31)(20,50,73,32,48)(21,25,51,41,74)(22,42,26,75,52)(23,76,43,53,27)(24,54,77,28,44), (1,71)(2,12)(3,64)(4,39)(5,67)(6,16)(7,60)(8,35)(9,65)(10,57)(11,15)(13,69)(14,61)(17,51)(18,22)(19,76)(20,28)(21,55)(23,80)(24,32)(25,29)(26,79)(27,47)(30,75)(31,43)(33,72)(34,38)(36,58)(37,68)(40,62)(41,78)(42,56)(44,48)(45,74)(46,52)(49,53)(50,77)(54,73)(59,63)(66,70), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,75)(2,80)(3,77)(4,74)(5,79)(6,76)(7,73)(8,78)(9,24)(10,21)(11,18)(12,23)(13,20)(14,17)(15,22)(16,19)(25,70)(26,67)(27,72)(28,69)(29,66)(30,71)(31,68)(32,65)(33,47)(34,44)(35,41)(36,46)(37,43)(38,48)(39,45)(40,42)(49,59)(50,64)(51,61)(52,58)(53,63)(54,60)(55,57)(56,62)>;
G:=Group( (1,79)(2,80)(3,73)(4,74)(5,75)(6,76)(7,77)(8,78)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19)(25,70)(26,71)(27,72)(28,65)(29,66)(30,67)(31,68)(32,69)(33,47)(34,48)(35,41)(36,42)(37,43)(38,44)(39,45)(40,46)(49,59)(50,60)(51,61)(52,62)(53,63)(54,64)(55,57)(56,58), (1,58,15,40,67)(2,33,59,68,16)(3,69,34,9,60)(4,10,70,61,35)(5,62,11,36,71)(6,37,63,72,12)(7,65,38,13,64)(8,14,66,57,39)(17,29,55,45,78)(18,46,30,79,56)(19,80,47,49,31)(20,50,73,32,48)(21,25,51,41,74)(22,42,26,75,52)(23,76,43,53,27)(24,54,77,28,44), (1,71)(2,12)(3,64)(4,39)(5,67)(6,16)(7,60)(8,35)(9,65)(10,57)(11,15)(13,69)(14,61)(17,51)(18,22)(19,76)(20,28)(21,55)(23,80)(24,32)(25,29)(26,79)(27,47)(30,75)(31,43)(33,72)(34,38)(36,58)(37,68)(40,62)(41,78)(42,56)(44,48)(45,74)(46,52)(49,53)(50,77)(54,73)(59,63)(66,70), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,75)(2,80)(3,77)(4,74)(5,79)(6,76)(7,73)(8,78)(9,24)(10,21)(11,18)(12,23)(13,20)(14,17)(15,22)(16,19)(25,70)(26,67)(27,72)(28,69)(29,66)(30,71)(31,68)(32,65)(33,47)(34,44)(35,41)(36,46)(37,43)(38,48)(39,45)(40,42)(49,59)(50,64)(51,61)(52,58)(53,63)(54,60)(55,57)(56,62) );
G=PermutationGroup([[(1,79),(2,80),(3,73),(4,74),(5,75),(6,76),(7,77),(8,78),(9,20),(10,21),(11,22),(12,23),(13,24),(14,17),(15,18),(16,19),(25,70),(26,71),(27,72),(28,65),(29,66),(30,67),(31,68),(32,69),(33,47),(34,48),(35,41),(36,42),(37,43),(38,44),(39,45),(40,46),(49,59),(50,60),(51,61),(52,62),(53,63),(54,64),(55,57),(56,58)], [(1,58,15,40,67),(2,33,59,68,16),(3,69,34,9,60),(4,10,70,61,35),(5,62,11,36,71),(6,37,63,72,12),(7,65,38,13,64),(8,14,66,57,39),(17,29,55,45,78),(18,46,30,79,56),(19,80,47,49,31),(20,50,73,32,48),(21,25,51,41,74),(22,42,26,75,52),(23,76,43,53,27),(24,54,77,28,44)], [(1,71),(2,12),(3,64),(4,39),(5,67),(6,16),(7,60),(8,35),(9,65),(10,57),(11,15),(13,69),(14,61),(17,51),(18,22),(19,76),(20,28),(21,55),(23,80),(24,32),(25,29),(26,79),(27,47),(30,75),(31,43),(33,72),(34,38),(36,58),(37,68),(40,62),(41,78),(42,56),(44,48),(45,74),(46,52),(49,53),(50,77),(54,73),(59,63),(66,70)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(1,75),(2,80),(3,77),(4,74),(5,79),(6,76),(7,73),(8,78),(9,24),(10,21),(11,18),(12,23),(13,20),(14,17),(15,22),(16,19),(25,70),(26,67),(27,72),(28,69),(29,66),(30,71),(31,68),(32,65),(33,47),(34,44),(35,41),(36,46),(37,43),(38,48),(39,45),(40,42),(49,59),(50,64),(51,61),(52,58),(53,63),(54,60),(55,57),(56,62)]])
56 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 5 | 8A | ··· | 8P | 10A | ··· | 10G | 20A | ··· | 20H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 8 | ··· | 8 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 5 | 5 | 5 | 5 | 10 | 10 | 1 | 1 | 1 | 1 | 2 | 2 | 5 | 5 | 5 | 5 | 10 | 10 | 4 | 10 | ··· | 10 | 4 | ··· | 4 | 4 | ··· | 4 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | M4(2) | F5 | C2×F5 | C2×F5 | D5⋊M4(2) |
kernel | C2×D5⋊M4(2) | C2×D5⋊C8 | C2×C4.F5 | D5⋊M4(2) | C2×C22.F5 | D5×C22×C4 | C2×C4×D5 | C22×C20 | C23×D5 | D10 | C22×C4 | C2×C4 | C23 | C2 |
# reps | 1 | 2 | 2 | 8 | 2 | 1 | 12 | 2 | 2 | 8 | 1 | 6 | 1 | 8 |
Matrix representation of C2×D5⋊M4(2) ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 1 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 35 |
0 | 0 | 0 | 0 | 6 | 35 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 35 | 6 | 0 | 0 |
0 | 0 | 1 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 1 |
0 | 0 | 0 | 0 | 6 | 35 |
40 | 2 | 0 | 0 | 0 | 0 |
4 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 32 | 28 | 0 | 0 |
0 | 0 | 0 | 9 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
40 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,40,6,0,0,0,0,0,0,40,6,0,0,0,0,35,35],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,35,1,0,0,0,0,6,6,0,0,0,0,0,0,6,6,0,0,0,0,1,35],[40,4,0,0,0,0,2,1,0,0,0,0,0,0,0,0,32,0,0,0,0,0,28,9,0,0,40,0,0,0,0,0,0,40,0,0],[40,40,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C2×D5⋊M4(2) in GAP, Magma, Sage, TeX
C_2\times D_5\rtimes M_4(2)
% in TeX
G:=Group("C2xD5:M4(2)");
// GroupNames label
G:=SmallGroup(320,1589);
// by ID
G=gap.SmallGroup(320,1589);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,184,1123,102,6278,818]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^5=c^2=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,d*b*d^-1=b^3,b*e=e*b,d*c*d^-1=b^2*c,c*e=e*c,e*d*e=d^5>;
// generators/relations