Extensions 1→N→G→Q→1 with N=C8.D10 and Q=C2

Direct product G=N×Q with N=C8.D10 and Q=C2
dρLabelID
C2×C8.D10160C2xC8.D10320,1419

Semidirect products G=N:Q with N=C8.D10 and Q=C2
extensionφ:Q→Out NdρLabelID
C8.D101C2 = SD16⋊D10φ: C2/C1C2 ⊆ Out C8.D10808-C8.D10:1C2320,1445
C8.D102C2 = D86D10φ: C2/C1C2 ⊆ Out C8.D10808-C8.D10:2C2320,1447
C8.D103C2 = D5×C8.C22φ: C2/C1C2 ⊆ Out C8.D10808-C8.D10:3C2320,1448
C8.D104C2 = D20.44D4φ: C2/C1C2 ⊆ Out C8.D101608-C8.D10:4C2320,1451
C8.D105C2 = D20.1D4φ: C2/C1C2 ⊆ Out C8.D10808-C8.D10:5C2320,373
C8.D106C2 = D20.2D4φ: C2/C1C2 ⊆ Out C8.D10808-C8.D10:6C2320,375
C8.D107C2 = D20.4D4φ: C2/C1C2 ⊆ Out C8.D10808-C8.D10:7C2320,379
C8.D108C2 = M4(2)⋊D10φ: C2/C1C2 ⊆ Out C8.D10804C8.D10:8C2320,452
C8.D109C2 = D4.9D20φ: C2/C1C2 ⊆ Out C8.D10804-C8.D10:9C2320,453
C8.D1010C2 = C8.24D20φ: C2/C1C2 ⊆ Out C8.D10804C8.D10:10C2320,525
C8.D1011C2 = D4.11D20φ: C2/C1C2 ⊆ Out C8.D10804C8.D10:11C2320,1423
C8.D1012C2 = D4.13D20φ: C2/C1C2 ⊆ Out C8.D101604-C8.D10:12C2320,1425
C8.D1013C2 = C40.9C23φ: trivial image804C8.D10:13C2320,1420

Non-split extensions G=N.Q with N=C8.D10 and Q=C2
extensionφ:Q→Out NdρLabelID
C8.D10.1C2 = D20.7D4φ: C2/C1C2 ⊆ Out C8.D101608-C8.D10.1C2320,382
C8.D10.2C2 = C8.20D20φ: C2/C1C2 ⊆ Out C8.D101604-C8.D10.2C2320,523

׿
×
𝔽