Copied to
clipboard

G = D4.11D20order 320 = 26·5

1st non-split extension by D4 of D20 acting through Inn(D4)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.11D20, Q8.11D20, D4011C22, C20.61C24, C40.10C23, M4(2)⋊20D10, D20.24C23, Dic2010C22, Dic10.24C23, C8○D43D5, (C2×C8)⋊6D10, (C2×C40)⋊9C22, (C5×D4).23D4, C20.73(C2×D4), C4.27(C2×D20), C51(D4○SD16), (C5×Q8).23D4, D48D103C2, C8⋊D1011C2, C4○D4.38D10, C4○D201C22, D407C211C2, C8.55(C22×D5), C4.58(C23×D5), C22.3(C2×D20), C8.D1011C2, C40⋊C211C22, C2.30(C22×D20), C10.28(C22×D4), D4.10D103C2, (C2×C20).515C23, (C2×Dic10)⋊35C22, (C2×D20).181C22, (C5×M4(2))⋊22C22, (C5×C8○D4)⋊3C2, (C2×C40⋊C2)⋊6C2, (C2×C10).8(C2×D4), (C5×C4○D4).45C22, (C2×C4).226(C22×D5), SmallGroup(320,1423)

Series: Derived Chief Lower central Upper central

C1C20 — D4.11D20
C1C5C10C20D20C2×D20D48D10 — D4.11D20
C5C10C20 — D4.11D20
C1C2C4○D4C8○D4

Generators and relations for D4.11D20
 G = < a,b,c,d | a4=b2=1, c20=d2=a2, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c19 >

Subgroups: 1094 in 258 conjugacy classes, 107 normal (20 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, D5, C10, C10, C2×C8, M4(2), D8, SD16, Q16, C2×D4, C2×Q8, C4○D4, C4○D4, Dic5, C20, C20, D10, C2×C10, C8○D4, C2×SD16, C4○D8, C8⋊C22, C8.C22, 2+ 1+4, 2- 1+4, C40, C40, Dic10, Dic10, Dic10, C4×D5, D20, D20, D20, C2×Dic5, C5⋊D4, C2×C20, C5×D4, C5×Q8, C22×D5, D4○SD16, C40⋊C2, C40⋊C2, D40, Dic20, C2×C40, C5×M4(2), C2×Dic10, C2×D20, C4○D20, D4×D5, D42D5, Q8×D5, Q82D5, C5×C4○D4, C2×C40⋊C2, D407C2, C8⋊D10, C8.D10, C5×C8○D4, D48D10, D4.10D10, D4.11D20
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C24, D10, C22×D4, D20, C22×D5, D4○SD16, C2×D20, C23×D5, C22×D20, D4.11D20

Smallest permutation representation of D4.11D20
On 80 points
Generators in S80
(1 65 21 45)(2 66 22 46)(3 67 23 47)(4 68 24 48)(5 69 25 49)(6 70 26 50)(7 71 27 51)(8 72 28 52)(9 73 29 53)(10 74 30 54)(11 75 31 55)(12 76 32 56)(13 77 33 57)(14 78 34 58)(15 79 35 59)(16 80 36 60)(17 41 37 61)(18 42 38 62)(19 43 39 63)(20 44 40 64)
(1 45)(2 46)(3 47)(4 48)(5 49)(6 50)(7 51)(8 52)(9 53)(10 54)(11 55)(12 56)(13 57)(14 58)(15 59)(16 60)(17 61)(18 62)(19 63)(20 64)(21 65)(22 66)(23 67)(24 68)(25 69)(26 70)(27 71)(28 72)(29 73)(30 74)(31 75)(32 76)(33 77)(34 78)(35 79)(36 80)(37 41)(38 42)(39 43)(40 44)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 20 21 40)(2 39 22 19)(3 18 23 38)(4 37 24 17)(5 16 25 36)(6 35 26 15)(7 14 27 34)(8 33 28 13)(9 12 29 32)(10 31 30 11)(41 68 61 48)(42 47 62 67)(43 66 63 46)(44 45 64 65)(49 60 69 80)(50 79 70 59)(51 58 71 78)(52 77 72 57)(53 56 73 76)(54 75 74 55)

G:=sub<Sym(80)| (1,65,21,45)(2,66,22,46)(3,67,23,47)(4,68,24,48)(5,69,25,49)(6,70,26,50)(7,71,27,51)(8,72,28,52)(9,73,29,53)(10,74,30,54)(11,75,31,55)(12,76,32,56)(13,77,33,57)(14,78,34,58)(15,79,35,59)(16,80,36,60)(17,41,37,61)(18,42,38,62)(19,43,39,63)(20,44,40,64), (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,71)(28,72)(29,73)(30,74)(31,75)(32,76)(33,77)(34,78)(35,79)(36,80)(37,41)(38,42)(39,43)(40,44), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,20,21,40)(2,39,22,19)(3,18,23,38)(4,37,24,17)(5,16,25,36)(6,35,26,15)(7,14,27,34)(8,33,28,13)(9,12,29,32)(10,31,30,11)(41,68,61,48)(42,47,62,67)(43,66,63,46)(44,45,64,65)(49,60,69,80)(50,79,70,59)(51,58,71,78)(52,77,72,57)(53,56,73,76)(54,75,74,55)>;

G:=Group( (1,65,21,45)(2,66,22,46)(3,67,23,47)(4,68,24,48)(5,69,25,49)(6,70,26,50)(7,71,27,51)(8,72,28,52)(9,73,29,53)(10,74,30,54)(11,75,31,55)(12,76,32,56)(13,77,33,57)(14,78,34,58)(15,79,35,59)(16,80,36,60)(17,41,37,61)(18,42,38,62)(19,43,39,63)(20,44,40,64), (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,71)(28,72)(29,73)(30,74)(31,75)(32,76)(33,77)(34,78)(35,79)(36,80)(37,41)(38,42)(39,43)(40,44), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,20,21,40)(2,39,22,19)(3,18,23,38)(4,37,24,17)(5,16,25,36)(6,35,26,15)(7,14,27,34)(8,33,28,13)(9,12,29,32)(10,31,30,11)(41,68,61,48)(42,47,62,67)(43,66,63,46)(44,45,64,65)(49,60,69,80)(50,79,70,59)(51,58,71,78)(52,77,72,57)(53,56,73,76)(54,75,74,55) );

G=PermutationGroup([[(1,65,21,45),(2,66,22,46),(3,67,23,47),(4,68,24,48),(5,69,25,49),(6,70,26,50),(7,71,27,51),(8,72,28,52),(9,73,29,53),(10,74,30,54),(11,75,31,55),(12,76,32,56),(13,77,33,57),(14,78,34,58),(15,79,35,59),(16,80,36,60),(17,41,37,61),(18,42,38,62),(19,43,39,63),(20,44,40,64)], [(1,45),(2,46),(3,47),(4,48),(5,49),(6,50),(7,51),(8,52),(9,53),(10,54),(11,55),(12,56),(13,57),(14,58),(15,59),(16,60),(17,61),(18,62),(19,63),(20,64),(21,65),(22,66),(23,67),(24,68),(25,69),(26,70),(27,71),(28,72),(29,73),(30,74),(31,75),(32,76),(33,77),(34,78),(35,79),(36,80),(37,41),(38,42),(39,43),(40,44)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,20,21,40),(2,39,22,19),(3,18,23,38),(4,37,24,17),(5,16,25,36),(6,35,26,15),(7,14,27,34),(8,33,28,13),(9,12,29,32),(10,31,30,11),(41,68,61,48),(42,47,62,67),(43,66,63,46),(44,45,64,65),(49,60,69,80),(50,79,70,59),(51,58,71,78),(52,77,72,57),(53,56,73,76),(54,75,74,55)]])

62 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H5A5B8A8B8C8D8E10A10B10C···10H20A20B20C20D20E···20J40A···40H40I···40T
order122222222444444445588888101010···102020202020···2040···4040···40
size11222202020202222202020202222444224···422224···42···24···4

62 irreducible representations

dim111111112222222244
type++++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D5D10D10D10D20D20D4○SD16D4.11D20
kernelD4.11D20C2×C40⋊C2D407C2C8⋊D10C8.D10C5×C8○D4D48D10D4.10D10C5×D4C5×Q8C8○D4C2×C8M4(2)C4○D4D4Q8C5C1
# reps1333311131266212428

Matrix representation of D4.11D20 in GL4(𝔽41) generated by

0010
0001
40000
04000
,
0010
0001
1000
0100
,
231600
251200
002316
002512
,
121400
162900
001214
001629
G:=sub<GL(4,GF(41))| [0,0,40,0,0,0,0,40,1,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,1,1,0,0,0,0,1,0,0],[23,25,0,0,16,12,0,0,0,0,23,25,0,0,16,12],[12,16,0,0,14,29,0,0,0,0,12,16,0,0,14,29] >;

D4.11D20 in GAP, Magma, Sage, TeX

D_4._{11}D_{20}
% in TeX

G:=Group("D4.11D20");
// GroupNames label

G:=SmallGroup(320,1423);
// by ID

G=gap.SmallGroup(320,1423);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,387,675,80,1684,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=1,c^20=d^2=a^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^19>;
// generators/relations

׿
×
𝔽