Extensions 1→N→G→Q→1 with N=C8 and Q=Dic10

Direct product G=N×Q with N=C8 and Q=Dic10
dρLabelID
C8×Dic10320C8xDic10320,305

Semidirect products G=N:Q with N=C8 and Q=Dic10
extensionφ:Q→Aut NdρLabelID
C81Dic10 = C8⋊Dic10φ: Dic10/C10C22 ⊆ Aut C8320C8:1Dic10320,329
C82Dic10 = C403Q8φ: Dic10/C10C22 ⊆ Aut C8320C8:2Dic10320,483
C83Dic10 = C404Q8φ: Dic10/C10C22 ⊆ Aut C8320C8:3Dic10320,503
C84Dic10 = C402Q8φ: Dic10/Dic5C2 ⊆ Aut C8320C8:4Dic10320,501
C85Dic10 = C405Q8φ: Dic10/Dic5C2 ⊆ Aut C8320C8:5Dic10320,482
C86Dic10 = C40⋊Q8φ: Dic10/Dic5C2 ⊆ Aut C8320C8:6Dic10320,328
C87Dic10 = C408Q8φ: Dic10/C20C2 ⊆ Aut C8320C8:7Dic10320,309
C88Dic10 = C409Q8φ: Dic10/C20C2 ⊆ Aut C8320C8:8Dic10320,307
C89Dic10 = C4011Q8φ: Dic10/C20C2 ⊆ Aut C8320C8:9Dic10320,306

Non-split extensions G=N.Q with N=C8 and Q=Dic10
extensionφ:Q→Aut NdρLabelID
C8.1Dic10 = C8.Dic10φ: Dic10/C10C22 ⊆ Aut C8804C8.1Dic10320,45
C8.2Dic10 = C40.6Q8φ: Dic10/C10C22 ⊆ Aut C8804C8.2Dic10320,52
C8.3Dic10 = C40.Q8φ: Dic10/C10C22 ⊆ Aut C8804C8.3Dic10320,71
C8.4Dic10 = C40.2Q8φ: Dic10/Dic5C2 ⊆ Aut C8320C8.4Dic10320,47
C8.5Dic10 = C10.SD32φ: Dic10/Dic5C2 ⊆ Aut C8320C8.5Dic10320,48
C8.6Dic10 = C8.6Dic10φ: Dic10/Dic5C2 ⊆ Aut C8320C8.6Dic10320,505
C8.7Dic10 = C40.7Q8φ: Dic10/Dic5C2 ⊆ Aut C81604C8.7Dic10320,51
C8.8Dic10 = C8.8Dic10φ: Dic10/Dic5C2 ⊆ Aut C8320C8.8Dic10320,485
C8.9Dic10 = C40.9Q8φ: Dic10/Dic5C2 ⊆ Aut C8804C8.9Dic10320,69
C8.10Dic10 = C8013C4φ: Dic10/C20C2 ⊆ Aut C8320C8.10Dic10320,62
C8.11Dic10 = C8014C4φ: Dic10/C20C2 ⊆ Aut C8320C8.11Dic10320,63
C8.12Dic10 = C40.13Q8φ: Dic10/C20C2 ⊆ Aut C8320C8.12Dic10320,310
C8.13Dic10 = C80.6C4φ: Dic10/C20C2 ⊆ Aut C81602C8.13Dic10320,64
C8.14Dic10 = C40.7C8φ: Dic10/C20C2 ⊆ Aut C8802C8.14Dic10320,21
C8.15Dic10 = C203C16central extension (φ=1)320C8.15Dic10320,20
C8.16Dic10 = C40.88D4central extension (φ=1)320C8.16Dic10320,59

׿
×
𝔽