Copied to
clipboard

G = C40.7C8order 320 = 26·5

1st non-split extension by C40 of C8 acting via C8/C4=C2

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C40.7C8, C40.65D4, C8.29D20, C40.16Q8, C8.14Dic10, C42.9Dic5, (C4×C8).11D5, C8.1(C52C8), C53(C8.C8), (C2×C40).42C4, C20.71(C2×C8), (C4×C20).31C4, (C4×C40).13C2, C10.13(C4⋊C8), C20.70(C4⋊C4), (C2×C8).9Dic5, (C2×C8).321D10, C2.5(C203C8), C20.4C8.5C2, C4.19(C4⋊Dic5), (C2×C40).397C22, (C2×C10).37M4(2), C22.2(C4.Dic5), C4.8(C2×C52C8), (C2×C20).474(C2×C4), (C2×C4).69(C2×Dic5), SmallGroup(320,21)

Series: Derived Chief Lower central Upper central

C1C20 — C40.7C8
C1C5C10C20C40C2×C40C20.4C8 — C40.7C8
C5C10C20 — C40.7C8
C1C8C2×C8C4×C8

Generators and relations for C40.7C8
 G = < a,b | a40=1, b8=a20, bab-1=a-1 >

2C2
2C4
2C4
2C10
2C2×C4
2C20
2C20
10C16
10C16
2C2×C20
5M5(2)
5M5(2)
2C52C16
2C52C16
5C8.C8

Smallest permutation representation of C40.7C8
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 48 6 43 11 78 16 73 21 68 26 63 31 58 36 53)(2 47 7 42 12 77 17 72 22 67 27 62 32 57 37 52)(3 46 8 41 13 76 18 71 23 66 28 61 33 56 38 51)(4 45 9 80 14 75 19 70 24 65 29 60 34 55 39 50)(5 44 10 79 15 74 20 69 25 64 30 59 35 54 40 49)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,48,6,43,11,78,16,73,21,68,26,63,31,58,36,53)(2,47,7,42,12,77,17,72,22,67,27,62,32,57,37,52)(3,46,8,41,13,76,18,71,23,66,28,61,33,56,38,51)(4,45,9,80,14,75,19,70,24,65,29,60,34,55,39,50)(5,44,10,79,15,74,20,69,25,64,30,59,35,54,40,49)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,48,6,43,11,78,16,73,21,68,26,63,31,58,36,53)(2,47,7,42,12,77,17,72,22,67,27,62,32,57,37,52)(3,46,8,41,13,76,18,71,23,66,28,61,33,56,38,51)(4,45,9,80,14,75,19,70,24,65,29,60,34,55,39,50)(5,44,10,79,15,74,20,69,25,64,30,59,35,54,40,49) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,48,6,43,11,78,16,73,21,68,26,63,31,58,36,53),(2,47,7,42,12,77,17,72,22,67,27,62,32,57,37,52),(3,46,8,41,13,76,18,71,23,66,28,61,33,56,38,51),(4,45,9,80,14,75,19,70,24,65,29,60,34,55,39,50),(5,44,10,79,15,74,20,69,25,64,30,59,35,54,40,49)]])

92 conjugacy classes

class 1 2A2B4A4B4C···4G5A5B8A8B8C8D8E···8J10A···10F16A···16H20A···20X40A···40AF
order122444···45588888···810···1016···1620···2040···40
size112112···22211112···22···220···202···22···2

92 irreducible representations

dim1111112222222222222
type++++-+--+-+
imageC1C2C2C4C4C8D4Q8D5M4(2)Dic5Dic5D10C52C8Dic10D20C8.C8C4.Dic5C40.7C8
kernelC40.7C8C20.4C8C4×C40C4×C20C2×C40C40C40C40C4×C8C2×C10C42C2×C8C2×C8C8C8C8C5C22C1
# reps12122811222228448832

Matrix representation of C40.7C8 in GL2(𝔽41) generated by

150
011
,
027
10
G:=sub<GL(2,GF(41))| [15,0,0,11],[0,1,27,0] >;

C40.7C8 in GAP, Magma, Sage, TeX

C_{40}._7C_8
% in TeX

G:=Group("C40.7C8");
// GroupNames label

G:=SmallGroup(320,21);
// by ID

G=gap.SmallGroup(320,21);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,141,64,100,1123,136,102,12550]);
// Polycyclic

G:=Group<a,b|a^40=1,b^8=a^20,b*a*b^-1=a^-1>;
// generators/relations

Export

Subgroup lattice of C40.7C8 in TeX

׿
×
𝔽