Extensions 1→N→G→Q→1 with N=D4.D10 and Q=C2

Direct product G=N×Q with N=D4.D10 and Q=C2
dρLabelID
C2×D4.D1080C2xD4.D10320,1465

Semidirect products G=N:Q with N=D4.D10 and Q=C2
extensionφ:Q→Out NdρLabelID
D4.D101C2 = D20.3D4φ: C2/C1C2 ⊆ Out D4.D10808+D4.D10:1C2320,376
D4.D102C2 = D20.14D4φ: C2/C1C2 ⊆ Out D4.D10804D4.D10:2C2320,689
D4.D103C2 = D205D4φ: C2/C1C2 ⊆ Out D4.D10404D4.D10:3C2320,704
D4.D104C2 = C40.23D4φ: C2/C1C2 ⊆ Out D4.D10804D4.D10:4C2320,787
D4.D105C2 = D2018D4φ: C2/C1C2 ⊆ Out D4.D10408+D4.D10:5C2320,825
D4.D106C2 = D20.38D4φ: C2/C1C2 ⊆ Out D4.D10808-D4.D10:6C2320,828
D4.D107C2 = D813D10φ: C2/C1C2 ⊆ Out D4.D10804D4.D10:7C2320,1429
D4.D108C2 = D20.29D4φ: C2/C1C2 ⊆ Out D4.D10804D4.D10:8C2320,1434
D4.D109C2 = D5×C8⋊C22φ: C2/C1C2 ⊆ Out D4.D10408+D4.D10:9C2320,1444
D4.D1010C2 = SD16⋊D10φ: C2/C1C2 ⊆ Out D4.D10808-D4.D10:10C2320,1445
D4.D1011C2 = D20.32C23φ: C2/C1C2 ⊆ Out D4.D10808+D4.D10:11C2320,1507
D4.D1012C2 = D20.33C23φ: C2/C1C2 ⊆ Out D4.D10808-D4.D10:12C2320,1508
D4.D1013C2 = C20.C24φ: trivial image804D4.D10:13C2320,1494

Non-split extensions G=N.Q with N=D4.D10 and Q=C2
extensionφ:Q→Out NdρLabelID
D4.D10.1C2 = D20.2D4φ: C2/C1C2 ⊆ Out D4.D10808-D4.D10.1C2320,375
D4.D10.2C2 = C40.44D4φ: C2/C1C2 ⊆ Out D4.D10804D4.D10.2C2320,804

׿
×
𝔽