metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D20.14D4, C42.66D10, Dic10.14D4, C4.52(D4×D5), C4.4D4⋊5D5, (C2×C20).11D4, C20.29(C2×D4), (C2×D4).52D10, C5⋊3(D4.8D4), (C2×Q8).41D10, D20⋊4C4⋊12C2, C10.52C22≀C2, D4.D10⋊2C2, C20.10D4⋊5C2, (C4×C20).110C22, (C2×C20).380C23, Q8.10D10⋊2C2, C4○D20.20C22, (D4×C10).68C22, (Q8×C10).59C22, C2.20(C23⋊D10), C4.Dic5.14C22, (C5×C4.4D4)⋊5C2, (C2×C10).511(C2×D4), (C2×C4).10(C5⋊D4), C22.32(C2×C5⋊D4), (C2×C4).117(C22×D5), SmallGroup(320,689)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D20.14D4
G = < a,b,c,d | a20=b2=d2=1, c4=a10, bab=cac-1=a-1, dad=a9, cbc-1=a3b, dbd=a18b, dcd=a10c3 >
Subgroups: 590 in 146 conjugacy classes, 39 normal (19 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C10, C42, C22⋊C4, M4(2), D8, SD16, C2×D4, C2×Q8, C2×Q8, C4○D4, Dic5, C20, C20, D10, C2×C10, C2×C10, C4.10D4, C4≀C2, C4.4D4, C8⋊C22, 2- 1+4, C5⋊2C8, Dic10, Dic10, C4×D5, D20, D20, C5⋊D4, C2×C20, C2×C20, C2×C20, C5×D4, C5×Q8, C22×C10, D4.8D4, C4.Dic5, D4⋊D5, D4.D5, C4×C20, C5×C22⋊C4, C4○D20, C4○D20, Q8×D5, Q8⋊2D5, D4×C10, Q8×C10, D20⋊4C4, C20.10D4, D4.D10, C5×C4.4D4, Q8.10D10, D20.14D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, D10, C22≀C2, C5⋊D4, C22×D5, D4.8D4, D4×D5, C2×C5⋊D4, C23⋊D10, D20.14D4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 75)(2 74)(3 73)(4 72)(5 71)(6 70)(7 69)(8 68)(9 67)(10 66)(11 65)(12 64)(13 63)(14 62)(15 61)(16 80)(17 79)(18 78)(19 77)(20 76)(21 41)(22 60)(23 59)(24 58)(25 57)(26 56)(27 55)(28 54)(29 53)(30 52)(31 51)(32 50)(33 49)(34 48)(35 47)(36 46)(37 45)(38 44)(39 43)(40 42)
(1 56 16 41 11 46 6 51)(2 55 17 60 12 45 7 50)(3 54 18 59 13 44 8 49)(4 53 19 58 14 43 9 48)(5 52 20 57 15 42 10 47)(21 62 36 67 31 72 26 77)(22 61 37 66 32 71 27 76)(23 80 38 65 33 70 28 75)(24 79 39 64 34 69 29 74)(25 78 40 63 35 68 30 73)
(1 41)(2 50)(3 59)(4 48)(5 57)(6 46)(7 55)(8 44)(9 53)(10 42)(11 51)(12 60)(13 49)(14 58)(15 47)(16 56)(17 45)(18 54)(19 43)(20 52)(21 77)(22 66)(23 75)(24 64)(25 73)(26 62)(27 71)(28 80)(29 69)(30 78)(31 67)(32 76)(33 65)(34 74)(35 63)(36 72)(37 61)(38 70)(39 79)(40 68)
G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,75)(2,74)(3,73)(4,72)(5,71)(6,70)(7,69)(8,68)(9,67)(10,66)(11,65)(12,64)(13,63)(14,62)(15,61)(16,80)(17,79)(18,78)(19,77)(20,76)(21,41)(22,60)(23,59)(24,58)(25,57)(26,56)(27,55)(28,54)(29,53)(30,52)(31,51)(32,50)(33,49)(34,48)(35,47)(36,46)(37,45)(38,44)(39,43)(40,42), (1,56,16,41,11,46,6,51)(2,55,17,60,12,45,7,50)(3,54,18,59,13,44,8,49)(4,53,19,58,14,43,9,48)(5,52,20,57,15,42,10,47)(21,62,36,67,31,72,26,77)(22,61,37,66,32,71,27,76)(23,80,38,65,33,70,28,75)(24,79,39,64,34,69,29,74)(25,78,40,63,35,68,30,73), (1,41)(2,50)(3,59)(4,48)(5,57)(6,46)(7,55)(8,44)(9,53)(10,42)(11,51)(12,60)(13,49)(14,58)(15,47)(16,56)(17,45)(18,54)(19,43)(20,52)(21,77)(22,66)(23,75)(24,64)(25,73)(26,62)(27,71)(28,80)(29,69)(30,78)(31,67)(32,76)(33,65)(34,74)(35,63)(36,72)(37,61)(38,70)(39,79)(40,68)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,75)(2,74)(3,73)(4,72)(5,71)(6,70)(7,69)(8,68)(9,67)(10,66)(11,65)(12,64)(13,63)(14,62)(15,61)(16,80)(17,79)(18,78)(19,77)(20,76)(21,41)(22,60)(23,59)(24,58)(25,57)(26,56)(27,55)(28,54)(29,53)(30,52)(31,51)(32,50)(33,49)(34,48)(35,47)(36,46)(37,45)(38,44)(39,43)(40,42), (1,56,16,41,11,46,6,51)(2,55,17,60,12,45,7,50)(3,54,18,59,13,44,8,49)(4,53,19,58,14,43,9,48)(5,52,20,57,15,42,10,47)(21,62,36,67,31,72,26,77)(22,61,37,66,32,71,27,76)(23,80,38,65,33,70,28,75)(24,79,39,64,34,69,29,74)(25,78,40,63,35,68,30,73), (1,41)(2,50)(3,59)(4,48)(5,57)(6,46)(7,55)(8,44)(9,53)(10,42)(11,51)(12,60)(13,49)(14,58)(15,47)(16,56)(17,45)(18,54)(19,43)(20,52)(21,77)(22,66)(23,75)(24,64)(25,73)(26,62)(27,71)(28,80)(29,69)(30,78)(31,67)(32,76)(33,65)(34,74)(35,63)(36,72)(37,61)(38,70)(39,79)(40,68) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,75),(2,74),(3,73),(4,72),(5,71),(6,70),(7,69),(8,68),(9,67),(10,66),(11,65),(12,64),(13,63),(14,62),(15,61),(16,80),(17,79),(18,78),(19,77),(20,76),(21,41),(22,60),(23,59),(24,58),(25,57),(26,56),(27,55),(28,54),(29,53),(30,52),(31,51),(32,50),(33,49),(34,48),(35,47),(36,46),(37,45),(38,44),(39,43),(40,42)], [(1,56,16,41,11,46,6,51),(2,55,17,60,12,45,7,50),(3,54,18,59,13,44,8,49),(4,53,19,58,14,43,9,48),(5,52,20,57,15,42,10,47),(21,62,36,67,31,72,26,77),(22,61,37,66,32,71,27,76),(23,80,38,65,33,70,28,75),(24,79,39,64,34,69,29,74),(25,78,40,63,35,68,30,73)], [(1,41),(2,50),(3,59),(4,48),(5,57),(6,46),(7,55),(8,44),(9,53),(10,42),(11,51),(12,60),(13,49),(14,58),(15,47),(16,56),(17,45),(18,54),(19,43),(20,52),(21,77),(22,66),(23,75),(24,64),(25,73),(26,62),(27,71),(28,80),(29,69),(30,78),(31,67),(32,76),(33,65),(34,74),(35,63),(36,72),(37,61),(38,70),(39,79),(40,68)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 5A | 5B | 8A | 8B | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 20A | ··· | 20L | 20M | 20N | 20O | 20P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 2 | 8 | 20 | 20 | 2 | 2 | 4 | 4 | 4 | 4 | 20 | 20 | 2 | 2 | 40 | 40 | 2 | ··· | 2 | 8 | 8 | 8 | 8 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D5 | D10 | D10 | D10 | C5⋊D4 | D4.8D4 | D4×D5 | D20.14D4 |
kernel | D20.14D4 | D20⋊4C4 | C20.10D4 | D4.D10 | C5×C4.4D4 | Q8.10D10 | Dic10 | D20 | C2×C20 | C4.4D4 | C42 | C2×D4 | C2×Q8 | C2×C4 | C5 | C4 | C1 |
# reps | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 8 | 2 | 4 | 8 |
Matrix representation of D20.14D4 ►in GL6(𝔽41)
0 | 1 | 0 | 0 | 0 | 0 |
40 | 34 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 20 | 20 | 1 | 4 |
0 | 0 | 31 | 0 | 20 | 40 |
30 | 32 | 0 | 0 | 0 | 0 |
27 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 32 | 0 |
0 | 0 | 25 | 25 | 32 | 5 |
0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 6 | 31 | 8 | 16 |
14 | 30 | 0 | 0 | 0 | 0 |
14 | 27 | 0 | 0 | 0 | 0 |
0 | 0 | 20 | 20 | 1 | 4 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 33 | 13 | 0 | 21 |
27 | 11 | 0 | 0 | 0 | 0 |
27 | 14 | 0 | 0 | 0 | 0 |
0 | 0 | 21 | 21 | 40 | 37 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 28 | 8 | 10 | 20 |
G:=sub<GL(6,GF(41))| [0,40,0,0,0,0,1,34,0,0,0,0,0,0,0,1,20,31,0,0,40,0,20,0,0,0,0,0,1,20,0,0,0,0,4,40],[30,27,0,0,0,0,32,11,0,0,0,0,0,0,0,25,9,6,0,0,0,25,0,31,0,0,32,32,0,8,0,0,0,5,0,16],[14,14,0,0,0,0,30,27,0,0,0,0,0,0,20,0,1,33,0,0,20,0,0,13,0,0,1,40,0,0,0,0,4,0,0,21],[27,27,0,0,0,0,11,14,0,0,0,0,0,0,21,0,0,28,0,0,21,0,40,8,0,0,40,40,0,10,0,0,37,0,0,20] >;
D20.14D4 in GAP, Magma, Sage, TeX
D_{20}._{14}D_4
% in TeX
G:=Group("D20.14D4");
// GroupNames label
G:=SmallGroup(320,689);
// by ID
G=gap.SmallGroup(320,689);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,254,219,1123,570,297,136,1684,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^20=b^2=d^2=1,c^4=a^10,b*a*b=c*a*c^-1=a^-1,d*a*d=a^9,c*b*c^-1=a^3*b,d*b*d=a^18*b,d*c*d=a^10*c^3>;
// generators/relations