Extensions 1→N→G→Q→1 with N=C5×D16 and Q=C2

Direct product G=N×Q with N=C5×D16 and Q=C2
dρLabelID
C10×D16160C10xD16320,1006

Semidirect products G=N:Q with N=C5×D16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×D16)⋊1C2 = C5⋊D32φ: C2/C1C2 ⊆ Out C5×D161604+(C5xD16):1C2320,77
(C5×D16)⋊2C2 = D5×D16φ: C2/C1C2 ⊆ Out C5×D16804+(C5xD16):2C2320,537
(C5×D16)⋊3C2 = D163D5φ: C2/C1C2 ⊆ Out C5×D161604-(C5xD16):3C2320,539
(C5×D16)⋊4C2 = D16⋊D5φ: C2/C1C2 ⊆ Out C5×D16804(C5xD16):4C2320,538
(C5×D16)⋊5C2 = C5×D32φ: C2/C1C2 ⊆ Out C5×D161602(C5xD16):5C2320,176
(C5×D16)⋊6C2 = C5×C16⋊C22φ: C2/C1C2 ⊆ Out C5×D16804(C5xD16):6C2320,1010
(C5×D16)⋊7C2 = C5×C4○D16φ: trivial image1602(C5xD16):7C2320,1009

Non-split extensions G=N.Q with N=C5×D16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×D16).1C2 = D16.D5φ: C2/C1C2 ⊆ Out C5×D161604-(C5xD16).1C2320,78
(C5×D16).2C2 = C5×SD64φ: C2/C1C2 ⊆ Out C5×D161602(C5xD16).2C2320,177

׿
×
𝔽