Copied to
clipboard

G = D163D5order 320 = 26·5

The semidirect product of D16 and D5 acting through Inn(D16)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D163D5, D8.1D10, D10.5D8, C16.8D10, Dic404C2, C80.6C22, C40.15C23, Dic5.24D8, Dic20.2C22, C4.3(D4×D5), (D5×C16)⋊2C2, (C5×D16)⋊3C2, C52(C4○D16), D8.D52C2, C2.18(D5×D8), C20.9(C2×D4), D83D54C2, (C4×D5).58D4, C10.34(C2×D8), C52C8.24D4, (C5×D8).1C22, C8.21(C22×D5), C52C16.5C22, (C8×D5).39C22, SmallGroup(320,539)

Series: Derived Chief Lower central Upper central

C1C40 — D163D5
C1C5C10C20C40C8×D5D83D5 — D163D5
C5C10C20C40 — D163D5
C1C2C4C8D16

Generators and relations for D163D5
 G = < a,b,c,d | a16=b2=c5=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a8b, dcd=c-1 >

Subgroups: 390 in 84 conjugacy classes, 31 normal (21 characteristic)
C1, C2, C2, C4, C4, C22, C5, C8, C8, C2×C4, D4, Q8, D5, C10, C10, C16, C16, C2×C8, D8, SD16, Q16, C4○D4, Dic5, Dic5, C20, D10, C2×C10, C2×C16, D16, SD32, Q32, C4○D8, C52C8, C40, Dic10, C4×D5, C2×Dic5, C5⋊D4, C5×D4, C4○D16, C52C16, C80, C8×D5, Dic20, D4.D5, C5×D8, D42D5, D5×C16, Dic40, D8.D5, C5×D16, D83D5, D163D5
Quotients: C1, C2, C22, D4, C23, D5, D8, C2×D4, D10, C2×D8, C22×D5, C4○D16, D4×D5, D5×D8, D163D5

Smallest permutation representation of D163D5
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 144)(2 143)(3 142)(4 141)(5 140)(6 139)(7 138)(8 137)(9 136)(10 135)(11 134)(12 133)(13 132)(14 131)(15 130)(16 129)(17 49)(18 64)(19 63)(20 62)(21 61)(22 60)(23 59)(24 58)(25 57)(26 56)(27 55)(28 54)(29 53)(30 52)(31 51)(32 50)(33 77)(34 76)(35 75)(36 74)(37 73)(38 72)(39 71)(40 70)(41 69)(42 68)(43 67)(44 66)(45 65)(46 80)(47 79)(48 78)(81 158)(82 157)(83 156)(84 155)(85 154)(86 153)(87 152)(88 151)(89 150)(90 149)(91 148)(92 147)(93 146)(94 145)(95 160)(96 159)(97 123)(98 122)(99 121)(100 120)(101 119)(102 118)(103 117)(104 116)(105 115)(106 114)(107 113)(108 128)(109 127)(110 126)(111 125)(112 124)
(1 84 43 59 104)(2 85 44 60 105)(3 86 45 61 106)(4 87 46 62 107)(5 88 47 63 108)(6 89 48 64 109)(7 90 33 49 110)(8 91 34 50 111)(9 92 35 51 112)(10 93 36 52 97)(11 94 37 53 98)(12 95 38 54 99)(13 96 39 55 100)(14 81 40 56 101)(15 82 41 57 102)(16 83 42 58 103)(17 126 138 149 77)(18 127 139 150 78)(19 128 140 151 79)(20 113 141 152 80)(21 114 142 153 65)(22 115 143 154 66)(23 116 144 155 67)(24 117 129 156 68)(25 118 130 157 69)(26 119 131 158 70)(27 120 132 159 71)(28 121 133 160 72)(29 122 134 145 73)(30 123 135 146 74)(31 124 136 147 75)(32 125 137 148 76)
(1 104)(2 105)(3 106)(4 107)(5 108)(6 109)(7 110)(8 111)(9 112)(10 97)(11 98)(12 99)(13 100)(14 101)(15 102)(16 103)(17 157)(18 158)(19 159)(20 160)(21 145)(22 146)(23 147)(24 148)(25 149)(26 150)(27 151)(28 152)(29 153)(30 154)(31 155)(32 156)(49 90)(50 91)(51 92)(52 93)(53 94)(54 95)(55 96)(56 81)(57 82)(58 83)(59 84)(60 85)(61 86)(62 87)(63 88)(64 89)(65 73)(66 74)(67 75)(68 76)(69 77)(70 78)(71 79)(72 80)(113 133)(114 134)(115 135)(116 136)(117 137)(118 138)(119 139)(120 140)(121 141)(122 142)(123 143)(124 144)(125 129)(126 130)(127 131)(128 132)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,144)(2,143)(3,142)(4,141)(5,140)(6,139)(7,138)(8,137)(9,136)(10,135)(11,134)(12,133)(13,132)(14,131)(15,130)(16,129)(17,49)(18,64)(19,63)(20,62)(21,61)(22,60)(23,59)(24,58)(25,57)(26,56)(27,55)(28,54)(29,53)(30,52)(31,51)(32,50)(33,77)(34,76)(35,75)(36,74)(37,73)(38,72)(39,71)(40,70)(41,69)(42,68)(43,67)(44,66)(45,65)(46,80)(47,79)(48,78)(81,158)(82,157)(83,156)(84,155)(85,154)(86,153)(87,152)(88,151)(89,150)(90,149)(91,148)(92,147)(93,146)(94,145)(95,160)(96,159)(97,123)(98,122)(99,121)(100,120)(101,119)(102,118)(103,117)(104,116)(105,115)(106,114)(107,113)(108,128)(109,127)(110,126)(111,125)(112,124), (1,84,43,59,104)(2,85,44,60,105)(3,86,45,61,106)(4,87,46,62,107)(5,88,47,63,108)(6,89,48,64,109)(7,90,33,49,110)(8,91,34,50,111)(9,92,35,51,112)(10,93,36,52,97)(11,94,37,53,98)(12,95,38,54,99)(13,96,39,55,100)(14,81,40,56,101)(15,82,41,57,102)(16,83,42,58,103)(17,126,138,149,77)(18,127,139,150,78)(19,128,140,151,79)(20,113,141,152,80)(21,114,142,153,65)(22,115,143,154,66)(23,116,144,155,67)(24,117,129,156,68)(25,118,130,157,69)(26,119,131,158,70)(27,120,132,159,71)(28,121,133,160,72)(29,122,134,145,73)(30,123,135,146,74)(31,124,136,147,75)(32,125,137,148,76), (1,104)(2,105)(3,106)(4,107)(5,108)(6,109)(7,110)(8,111)(9,112)(10,97)(11,98)(12,99)(13,100)(14,101)(15,102)(16,103)(17,157)(18,158)(19,159)(20,160)(21,145)(22,146)(23,147)(24,148)(25,149)(26,150)(27,151)(28,152)(29,153)(30,154)(31,155)(32,156)(49,90)(50,91)(51,92)(52,93)(53,94)(54,95)(55,96)(56,81)(57,82)(58,83)(59,84)(60,85)(61,86)(62,87)(63,88)(64,89)(65,73)(66,74)(67,75)(68,76)(69,77)(70,78)(71,79)(72,80)(113,133)(114,134)(115,135)(116,136)(117,137)(118,138)(119,139)(120,140)(121,141)(122,142)(123,143)(124,144)(125,129)(126,130)(127,131)(128,132)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,144)(2,143)(3,142)(4,141)(5,140)(6,139)(7,138)(8,137)(9,136)(10,135)(11,134)(12,133)(13,132)(14,131)(15,130)(16,129)(17,49)(18,64)(19,63)(20,62)(21,61)(22,60)(23,59)(24,58)(25,57)(26,56)(27,55)(28,54)(29,53)(30,52)(31,51)(32,50)(33,77)(34,76)(35,75)(36,74)(37,73)(38,72)(39,71)(40,70)(41,69)(42,68)(43,67)(44,66)(45,65)(46,80)(47,79)(48,78)(81,158)(82,157)(83,156)(84,155)(85,154)(86,153)(87,152)(88,151)(89,150)(90,149)(91,148)(92,147)(93,146)(94,145)(95,160)(96,159)(97,123)(98,122)(99,121)(100,120)(101,119)(102,118)(103,117)(104,116)(105,115)(106,114)(107,113)(108,128)(109,127)(110,126)(111,125)(112,124), (1,84,43,59,104)(2,85,44,60,105)(3,86,45,61,106)(4,87,46,62,107)(5,88,47,63,108)(6,89,48,64,109)(7,90,33,49,110)(8,91,34,50,111)(9,92,35,51,112)(10,93,36,52,97)(11,94,37,53,98)(12,95,38,54,99)(13,96,39,55,100)(14,81,40,56,101)(15,82,41,57,102)(16,83,42,58,103)(17,126,138,149,77)(18,127,139,150,78)(19,128,140,151,79)(20,113,141,152,80)(21,114,142,153,65)(22,115,143,154,66)(23,116,144,155,67)(24,117,129,156,68)(25,118,130,157,69)(26,119,131,158,70)(27,120,132,159,71)(28,121,133,160,72)(29,122,134,145,73)(30,123,135,146,74)(31,124,136,147,75)(32,125,137,148,76), (1,104)(2,105)(3,106)(4,107)(5,108)(6,109)(7,110)(8,111)(9,112)(10,97)(11,98)(12,99)(13,100)(14,101)(15,102)(16,103)(17,157)(18,158)(19,159)(20,160)(21,145)(22,146)(23,147)(24,148)(25,149)(26,150)(27,151)(28,152)(29,153)(30,154)(31,155)(32,156)(49,90)(50,91)(51,92)(52,93)(53,94)(54,95)(55,96)(56,81)(57,82)(58,83)(59,84)(60,85)(61,86)(62,87)(63,88)(64,89)(65,73)(66,74)(67,75)(68,76)(69,77)(70,78)(71,79)(72,80)(113,133)(114,134)(115,135)(116,136)(117,137)(118,138)(119,139)(120,140)(121,141)(122,142)(123,143)(124,144)(125,129)(126,130)(127,131)(128,132) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,144),(2,143),(3,142),(4,141),(5,140),(6,139),(7,138),(8,137),(9,136),(10,135),(11,134),(12,133),(13,132),(14,131),(15,130),(16,129),(17,49),(18,64),(19,63),(20,62),(21,61),(22,60),(23,59),(24,58),(25,57),(26,56),(27,55),(28,54),(29,53),(30,52),(31,51),(32,50),(33,77),(34,76),(35,75),(36,74),(37,73),(38,72),(39,71),(40,70),(41,69),(42,68),(43,67),(44,66),(45,65),(46,80),(47,79),(48,78),(81,158),(82,157),(83,156),(84,155),(85,154),(86,153),(87,152),(88,151),(89,150),(90,149),(91,148),(92,147),(93,146),(94,145),(95,160),(96,159),(97,123),(98,122),(99,121),(100,120),(101,119),(102,118),(103,117),(104,116),(105,115),(106,114),(107,113),(108,128),(109,127),(110,126),(111,125),(112,124)], [(1,84,43,59,104),(2,85,44,60,105),(3,86,45,61,106),(4,87,46,62,107),(5,88,47,63,108),(6,89,48,64,109),(7,90,33,49,110),(8,91,34,50,111),(9,92,35,51,112),(10,93,36,52,97),(11,94,37,53,98),(12,95,38,54,99),(13,96,39,55,100),(14,81,40,56,101),(15,82,41,57,102),(16,83,42,58,103),(17,126,138,149,77),(18,127,139,150,78),(19,128,140,151,79),(20,113,141,152,80),(21,114,142,153,65),(22,115,143,154,66),(23,116,144,155,67),(24,117,129,156,68),(25,118,130,157,69),(26,119,131,158,70),(27,120,132,159,71),(28,121,133,160,72),(29,122,134,145,73),(30,123,135,146,74),(31,124,136,147,75),(32,125,137,148,76)], [(1,104),(2,105),(3,106),(4,107),(5,108),(6,109),(7,110),(8,111),(9,112),(10,97),(11,98),(12,99),(13,100),(14,101),(15,102),(16,103),(17,157),(18,158),(19,159),(20,160),(21,145),(22,146),(23,147),(24,148),(25,149),(26,150),(27,151),(28,152),(29,153),(30,154),(31,155),(32,156),(49,90),(50,91),(51,92),(52,93),(53,94),(54,95),(55,96),(56,81),(57,82),(58,83),(59,84),(60,85),(61,86),(62,87),(63,88),(64,89),(65,73),(66,74),(67,75),(68,76),(69,77),(70,78),(71,79),(72,80),(113,133),(114,134),(115,135),(116,136),(117,137),(118,138),(119,139),(120,140),(121,141),(122,142),(123,143),(124,144),(125,129),(126,130),(127,131),(128,132)]])

44 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E5A5B8A8B8C8D10A10B10C10D10E10F16A16B16C16D16E16F16G16H20A20B40A40B40C40D80A···80H
order1222244444558888101010101010161616161616161620204040404080···80
size11881025540402222101022161616162222101010104444444···4

44 irreducible representations

dim11111122222222444
type+++++++++++++++-
imageC1C2C2C2C2C2D4D4D5D8D8D10D10C4○D16D4×D5D5×D8D163D5
kernelD163D5D5×C16Dic40D8.D5C5×D16D83D5C52C8C4×D5D16Dic5D10C16D8C5C4C2C1
# reps11121211222248248

Matrix representation of D163D5 in GL4(𝔽241) generated by

165000
013000
002400
000240
,
013000
165000
0010
0001
,
1000
0100
002401
0050190
,
1000
024000
002400
00501
G:=sub<GL(4,GF(241))| [165,0,0,0,0,130,0,0,0,0,240,0,0,0,0,240],[0,165,0,0,130,0,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,240,50,0,0,1,190],[1,0,0,0,0,240,0,0,0,0,240,50,0,0,0,1] >;

D163D5 in GAP, Magma, Sage, TeX

D_{16}\rtimes_3D_5
% in TeX

G:=Group("D16:3D5");
// GroupNames label

G:=SmallGroup(320,539);
// by ID

G=gap.SmallGroup(320,539);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,758,135,346,185,192,851,438,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^16=b^2=c^5=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^8*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽