Extensions 1→N→G→Q→1 with N=D4⋊D10 and Q=C2

Direct product G=N×Q with N=D4⋊D10 and Q=C2
dρLabelID
C2×D4⋊D1080C2xD4:D10320,1492

Semidirect products G=N:Q with N=D4⋊D10 and Q=C2
extensionφ:Q→Out NdρLabelID
D4⋊D101C2 = D44D20φ: C2/C1C2 ⊆ Out D4⋊D10404+D4:D10:1C2320,449
D4⋊D102C2 = D4.10D20φ: C2/C1C2 ⊆ Out D4⋊D10804D4:D10:2C2320,454
D4⋊D103C2 = D4.4D20φ: C2/C1C2 ⊆ Out D4⋊D10804+D4:D10:3C2320,769
D4⋊D104C2 = M4(2).D10φ: C2/C1C2 ⊆ Out D4⋊D10808+D4:D10:4C2320,826
D4⋊D105C2 = 2+ 1+4⋊D5φ: C2/C1C2 ⊆ Out D4⋊D10408+D4:D10:5C2320,868
D4⋊D106C2 = 2- 1+42D5φ: C2/C1C2 ⊆ Out D4⋊D10808+D4:D10:6C2320,872
D4⋊D107C2 = D815D10φ: C2/C1C2 ⊆ Out D4⋊D10804+D4:D10:7C2320,1441
D4⋊D108C2 = D811D10φ: C2/C1C2 ⊆ Out D4⋊D10804D4:D10:8C2320,1442
D4⋊D109C2 = D5×C8⋊C22φ: C2/C1C2 ⊆ Out D4⋊D10408+D4:D10:9C2320,1444
D4⋊D1010C2 = D40⋊C22φ: C2/C1C2 ⊆ Out D4⋊D10808+D4:D10:10C2320,1449
D4⋊D1011C2 = D20.32C23φ: C2/C1C2 ⊆ Out D4⋊D10808+D4:D10:11C2320,1507
D4⋊D1012C2 = D20.34C23φ: C2/C1C2 ⊆ Out D4⋊D10808+D4:D10:12C2320,1509
D4⋊D1013C2 = C20.C24φ: trivial image804D4:D10:13C2320,1494

Non-split extensions G=N.Q with N=D4⋊D10 and Q=C2
extensionφ:Q→Out NdρLabelID
D4⋊D10.1C2 = D4.3D20φ: C2/C1C2 ⊆ Out D4⋊D10804D4:D10.1C2320,768
D4⋊D10.2C2 = M4(2).15D10φ: C2/C1C2 ⊆ Out D4⋊D10808+D4:D10.2C2320,830

׿
×
𝔽