metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4⋊4D20, Q8⋊4D20, D20⋊15D4, C42⋊2D10, Dic10⋊15D4, M4(2)⋊3D10, C4≀C2⋊1D5, (C5×D4)⋊3D4, (C5×Q8)⋊3D4, C4.9(C2×D20), C8⋊D10⋊8C2, C20⋊4D4⋊6C2, C5⋊2(D4⋊4D4), C4○D4.1D10, C4.125(D4×D5), D20⋊4C4⋊5C2, D4⋊D10⋊1C2, D4⋊8D10⋊1C2, (C4×C20)⋊11C22, C20.337(C2×D4), (C22×D5).2D4, C22.29(D4×D5), C10.27C22≀C2, C20.46D4⋊1C2, (C2×D20)⋊13C22, C4.Dic5⋊4C22, (C2×C20).262C23, C4○D20.11C22, C2.30(C22⋊D20), (C5×M4(2))⋊10C22, (C5×C4≀C2)⋊1C2, (C2×C10).26(C2×D4), (C5×C4○D4).3C22, (C2×C4).109(C22×D5), SmallGroup(320,449)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4⋊4D20
G = < a,b,c,d | a4=b2=c20=d2=1, bab=dad=a-1, ac=ca, cbc-1=a-1b, dbd=ab, dcd=c-1 >
Subgroups: 974 in 168 conjugacy classes, 39 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, D5, C10, C10, C42, M4(2), M4(2), D8, SD16, C2×D4, C4○D4, C4○D4, Dic5, C20, C20, D10, C2×C10, C2×C10, C4.D4, C4≀C2, C4≀C2, C4⋊1D4, C8⋊C22, 2+ 1+4, C5⋊2C8, C40, Dic10, C4×D5, D20, D20, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C22×D5, C22×D5, D4⋊4D4, C40⋊C2, D40, C4.Dic5, D4⋊D5, Q8⋊D5, C4×C20, C5×M4(2), C2×D20, C2×D20, C4○D20, C4○D20, D4×D5, Q8⋊2D5, C5×C4○D4, D20⋊4C4, C20.46D4, C5×C4≀C2, C20⋊4D4, C8⋊D10, D4⋊D10, D4⋊8D10, D4⋊4D20
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, D10, C22≀C2, D20, C22×D5, D4⋊4D4, C2×D20, D4×D5, C22⋊D20, D4⋊4D20
(1 19 7 14)(2 20 8 15)(3 16 9 11)(4 17 10 12)(5 18 6 13)(21 36 31 26)(22 37 32 27)(23 38 33 28)(24 39 34 29)(25 40 35 30)
(1 21)(2 37)(3 33)(4 29)(5 25)(6 35)(7 31)(8 27)(9 23)(10 39)(11 28)(12 24)(13 40)(14 36)(15 32)(16 38)(17 34)(18 30)(19 26)(20 22)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 5)(2 4)(6 7)(8 10)(11 16)(12 20)(13 19)(14 18)(15 17)(21 30)(22 29)(23 28)(24 27)(25 26)(31 40)(32 39)(33 38)(34 37)(35 36)
G:=sub<Sym(40)| (1,19,7,14)(2,20,8,15)(3,16,9,11)(4,17,10,12)(5,18,6,13)(21,36,31,26)(22,37,32,27)(23,38,33,28)(24,39,34,29)(25,40,35,30), (1,21)(2,37)(3,33)(4,29)(5,25)(6,35)(7,31)(8,27)(9,23)(10,39)(11,28)(12,24)(13,40)(14,36)(15,32)(16,38)(17,34)(18,30)(19,26)(20,22), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,5)(2,4)(6,7)(8,10)(11,16)(12,20)(13,19)(14,18)(15,17)(21,30)(22,29)(23,28)(24,27)(25,26)(31,40)(32,39)(33,38)(34,37)(35,36)>;
G:=Group( (1,19,7,14)(2,20,8,15)(3,16,9,11)(4,17,10,12)(5,18,6,13)(21,36,31,26)(22,37,32,27)(23,38,33,28)(24,39,34,29)(25,40,35,30), (1,21)(2,37)(3,33)(4,29)(5,25)(6,35)(7,31)(8,27)(9,23)(10,39)(11,28)(12,24)(13,40)(14,36)(15,32)(16,38)(17,34)(18,30)(19,26)(20,22), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,5)(2,4)(6,7)(8,10)(11,16)(12,20)(13,19)(14,18)(15,17)(21,30)(22,29)(23,28)(24,27)(25,26)(31,40)(32,39)(33,38)(34,37)(35,36) );
G=PermutationGroup([[(1,19,7,14),(2,20,8,15),(3,16,9,11),(4,17,10,12),(5,18,6,13),(21,36,31,26),(22,37,32,27),(23,38,33,28),(24,39,34,29),(25,40,35,30)], [(1,21),(2,37),(3,33),(4,29),(5,25),(6,35),(7,31),(8,27),(9,23),(10,39),(11,28),(12,24),(13,40),(14,36),(15,32),(16,38),(17,34),(18,30),(19,26),(20,22)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,5),(2,4),(6,7),(8,10),(11,16),(12,20),(13,19),(14,18),(15,17),(21,30),(22,29),(23,28),(24,27),(25,26),(31,40),(32,39),(33,38),(34,37),(35,36)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 5A | 5B | 8A | 8B | 10A | 10B | 10C | 10D | 10E | 10F | 20A | 20B | 20C | 20D | 20E | ··· | 20N | 20O | 20P | 40A | 40B | 40C | 40D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 20 | ··· | 20 | 20 | 20 | 40 | 40 | 40 | 40 |
size | 1 | 1 | 2 | 4 | 20 | 20 | 20 | 40 | 2 | 2 | 4 | 4 | 4 | 20 | 2 | 2 | 8 | 40 | 2 | 2 | 4 | 4 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D4 | D4 | D5 | D10 | D10 | D10 | D20 | D20 | D4⋊4D4 | D4×D5 | D4×D5 | D4⋊4D20 |
kernel | D4⋊4D20 | D20⋊4C4 | C20.46D4 | C5×C4≀C2 | C20⋊4D4 | C8⋊D10 | D4⋊D10 | D4⋊8D10 | Dic10 | D20 | C5×D4 | C5×Q8 | C22×D5 | C4≀C2 | C42 | M4(2) | C4○D4 | D4 | Q8 | C5 | C4 | C22 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 8 |
Matrix representation of D4⋊4D20 ►in GL4(𝔽41) generated by
30 | 9 | 0 | 0 |
32 | 11 | 0 | 0 |
0 | 0 | 11 | 32 |
0 | 0 | 9 | 30 |
0 | 0 | 11 | 32 |
0 | 0 | 9 | 30 |
30 | 9 | 0 | 0 |
32 | 11 | 0 | 0 |
34 | 1 | 0 | 0 |
40 | 0 | 0 | 0 |
0 | 0 | 27 | 30 |
0 | 0 | 11 | 32 |
1 | 34 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 11 | 14 |
0 | 0 | 9 | 30 |
G:=sub<GL(4,GF(41))| [30,32,0,0,9,11,0,0,0,0,11,9,0,0,32,30],[0,0,30,32,0,0,9,11,11,9,0,0,32,30,0,0],[34,40,0,0,1,0,0,0,0,0,27,11,0,0,30,32],[1,0,0,0,34,40,0,0,0,0,11,9,0,0,14,30] >;
D4⋊4D20 in GAP, Magma, Sage, TeX
D_4\rtimes_4D_{20}
% in TeX
G:=Group("D4:4D20");
// GroupNames label
G:=SmallGroup(320,449);
// by ID
G=gap.SmallGroup(320,449);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,254,219,58,570,1684,851,102,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^20=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^-1*b,d*b*d=a*b,d*c*d=c^-1>;
// generators/relations