Extensions 1→N→G→Q→1 with N=C8 and Q=C2xDic5

Direct product G=NxQ with N=C8 and Q=C2xDic5
dρLabelID
C2xC8xDic5320C2xC8xDic5320,725

Semidirect products G=N:Q with N=C8 and Q=C2xDic5
extensionφ:Q→Aut NdρLabelID
C8:1(C2xDic5) = C23.47D20φ: C2xDic5/C10C22 ⊆ Aut C8160C8:1(C2xDic5)320,748
C8:2(C2xDic5) = D8:Dic5φ: C2xDic5/C10C22 ⊆ Aut C8160C8:2(C2xDic5)320,779
C8:3(C2xDic5) = SD16:Dic5φ: C2xDic5/C10C22 ⊆ Aut C8160C8:3(C2xDic5)320,791
C8:4(C2xDic5) = D8xDic5φ: C2xDic5/Dic5C2 ⊆ Aut C8160C8:4(C2xDic5)320,776
C8:5(C2xDic5) = SD16xDic5φ: C2xDic5/Dic5C2 ⊆ Aut C8160C8:5(C2xDic5)320,788
C8:6(C2xDic5) = M4(2)xDic5φ: C2xDic5/Dic5C2 ⊆ Aut C8160C8:6(C2xDic5)320,744
C8:7(C2xDic5) = C2xC40:5C4φ: C2xDic5/C2xC10C2 ⊆ Aut C8320C8:7(C2xDic5)320,732
C8:8(C2xDic5) = C2xC40:6C4φ: C2xDic5/C2xC10C2 ⊆ Aut C8320C8:8(C2xDic5)320,731
C8:9(C2xDic5) = C2xC40:8C4φ: C2xDic5/C2xC10C2 ⊆ Aut C8320C8:9(C2xDic5)320,727

Non-split extensions G=N.Q with N=C8 and Q=C2xDic5
extensionφ:Q→Aut NdρLabelID
C8.1(C2xDic5) = D8.Dic5φ: C2xDic5/C10C22 ⊆ Aut C8804C8.1(C2xDic5)320,121
C8.2(C2xDic5) = Q16.Dic5φ: C2xDic5/C10C22 ⊆ Aut C81604C8.2(C2xDic5)320,123
C8.3(C2xDic5) = D8:2Dic5φ: C2xDic5/C10C22 ⊆ Aut C8804C8.3(C2xDic5)320,124
C8.4(C2xDic5) = M4(2).Dic5φ: C2xDic5/C10C22 ⊆ Aut C8804C8.4(C2xDic5)320,752
C8.5(C2xDic5) = Q16:Dic5φ: C2xDic5/C10C22 ⊆ Aut C8320C8.5(C2xDic5)320,811
C8.6(C2xDic5) = D8:4Dic5φ: C2xDic5/C10C22 ⊆ Aut C8804C8.6(C2xDic5)320,824
C8.7(C2xDic5) = C10.D16φ: C2xDic5/Dic5C2 ⊆ Aut C8160C8.7(C2xDic5)320,120
C8.8(C2xDic5) = C40.15D4φ: C2xDic5/Dic5C2 ⊆ Aut C8320C8.8(C2xDic5)320,122
C8.9(C2xDic5) = C20.58D8φ: C2xDic5/Dic5C2 ⊆ Aut C81604C8.9(C2xDic5)320,125
C8.10(C2xDic5) = Q16xDic5φ: C2xDic5/Dic5C2 ⊆ Aut C8320C8.10(C2xDic5)320,810
C8.11(C2xDic5) = D8:5Dic5φ: C2xDic5/Dic5C2 ⊆ Aut C8804C8.11(C2xDic5)320,823
C8.12(C2xDic5) = C20.37C42φ: C2xDic5/Dic5C2 ⊆ Aut C8160C8.12(C2xDic5)320,749
C8.13(C2xDic5) = C40.70C23φ: C2xDic5/Dic5C2 ⊆ Aut C81604C8.13(C2xDic5)320,767
C8.14(C2xDic5) = C80:13C4φ: C2xDic5/C2xC10C2 ⊆ Aut C8320C8.14(C2xDic5)320,62
C8.15(C2xDic5) = C80:14C4φ: C2xDic5/C2xC10C2 ⊆ Aut C8320C8.15(C2xDic5)320,63
C8.16(C2xDic5) = C80.6C4φ: C2xDic5/C2xC10C2 ⊆ Aut C81602C8.16(C2xDic5)320,64
C8.17(C2xDic5) = C23.22D20φ: C2xDic5/C2xC10C2 ⊆ Aut C8160C8.17(C2xDic5)320,733
C8.18(C2xDic5) = C40.Q8φ: C2xDic5/C2xC10C2 ⊆ Aut C8804C8.18(C2xDic5)320,71
C8.19(C2xDic5) = C2xC40.6C4φ: C2xDic5/C2xC10C2 ⊆ Aut C8160C8.19(C2xDic5)320,734
C8.20(C2xDic5) = C80:C4φ: C2xDic5/C2xC10C2 ⊆ Aut C8804C8.20(C2xDic5)320,70
C8.21(C2xDic5) = C2xC5:2C32central extension (φ=1)320C8.21(C2xDic5)320,56
C8.22(C2xDic5) = C80.9C4central extension (φ=1)1602C8.22(C2xDic5)320,57
C8.23(C2xDic5) = C16xDic5central extension (φ=1)320C8.23(C2xDic5)320,58
C8.24(C2xDic5) = C80:17C4central extension (φ=1)320C8.24(C2xDic5)320,60
C8.25(C2xDic5) = C22xC5:2C16central extension (φ=1)320C8.25(C2xDic5)320,723
C8.26(C2xDic5) = C2xC20.4C8central extension (φ=1)160C8.26(C2xDic5)320,724
C8.27(C2xDic5) = C20.42C42central extension (φ=1)160C8.27(C2xDic5)320,728

׿
x
:
Z
F
o
wr
Q
<