Copied to
clipboard

G = D8:5Dic5order 320 = 26·5

The semidirect product of D8 and Dic5 acting through Inn(D8)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D8:5Dic5, Q16:5Dic5, SD16:3Dic5, (C5xD8):9C4, C5:8(C8oD8), (C5xQ16):9C4, C4oD8.5D5, C40.61(C2xC4), (C8xDic5):2C2, (C5xSD16):8C4, C4.217(D4xD5), C5:2C8.35D4, C40.6C4:8C2, C4oD4.22D10, C10.129(C4xD4), (C2xC8).254D10, C20.376(C2xD4), D4.Dic5:3C2, Q8.3(C2xDic5), D4.3(C2xDic5), C8.11(C2xDic5), C2.16(D4xDic5), D4:2Dic5:4C2, (C2xC40).44C22, C4.7(C22xDic5), C20.136(C22xC4), (C2xC20).467C23, C22.3(D4:2D5), C4.Dic5.22C22, (C4xDic5).277C22, (C5xC4oD8).2C2, (C5xD4).24(C2xC4), (C5xQ8).25(C2xC4), (C5xC4oD4).9C22, (C2xC10).11(C4oD4), (C2xC4).554(C22xD5), (C2xC5:2C8).288C22, SmallGroup(320,823)

Series: Derived Chief Lower central Upper central

C1C20 — D8:5Dic5
C1C5C10C20C2xC20C2xC5:2C8D4.Dic5 — D8:5Dic5
C5C10C20 — D8:5Dic5
C1C4C2xC4C4oD8

Generators and relations for D8:5Dic5
 G = < a,b,c,d | a8=b2=c10=1, d2=c5, bab=a-1, ac=ca, ad=da, cbc-1=a4b, dbd-1=a2b, dcd-1=c-1 >

Subgroups: 278 in 106 conjugacy classes, 53 normal (31 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2xC4, C2xC4, D4, D4, Q8, C10, C10, C42, C2xC8, C2xC8, M4(2), D8, SD16, Q16, C4oD4, Dic5, C20, C20, C2xC10, C2xC10, C4xC8, C4wrC2, C8.C4, C8oD4, C4oD8, C5:2C8, C5:2C8, C40, C2xDic5, C2xC20, C2xC20, C5xD4, C5xD4, C5xQ8, C8oD8, C2xC5:2C8, C2xC5:2C8, C4.Dic5, C4.Dic5, C4xDic5, C2xC40, C5xD8, C5xSD16, C5xQ16, C5xC4oD4, C8xDic5, C40.6C4, D4:2Dic5, D4.Dic5, C5xC4oD8, D8:5Dic5
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, D5, C22xC4, C2xD4, C4oD4, Dic5, D10, C4xD4, C2xDic5, C22xD5, C8oD8, D4xD5, D4:2D5, C22xDic5, D4xDic5, D8:5Dic5

Smallest permutation representation of D8:5Dic5
On 80 points
Generators in S80
(1 30 32 12 36 7 23 17)(2 26 33 13 37 8 24 18)(3 27 34 14 38 9 25 19)(4 28 35 15 39 10 21 20)(5 29 31 11 40 6 22 16)(41 66 77 58 46 61 72 53)(42 67 78 59 47 62 73 54)(43 68 79 60 48 63 74 55)(44 69 80 51 49 64 75 56)(45 70 71 52 50 65 76 57)
(1 46)(2 42)(3 48)(4 44)(5 50)(6 57)(7 53)(8 59)(9 55)(10 51)(11 70)(12 66)(13 62)(14 68)(15 64)(16 65)(17 61)(18 67)(19 63)(20 69)(21 80)(22 76)(23 72)(24 78)(25 74)(26 54)(27 60)(28 56)(29 52)(30 58)(31 71)(32 77)(33 73)(34 79)(35 75)(36 41)(37 47)(38 43)(39 49)(40 45)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 40)(2 39)(3 38)(4 37)(5 36)(6 30)(7 29)(8 28)(9 27)(10 26)(11 17)(12 16)(13 20)(14 19)(15 18)(21 33)(22 32)(23 31)(24 35)(25 34)(41 76 46 71)(42 75 47 80)(43 74 48 79)(44 73 49 78)(45 72 50 77)(51 67 56 62)(52 66 57 61)(53 65 58 70)(54 64 59 69)(55 63 60 68)

G:=sub<Sym(80)| (1,30,32,12,36,7,23,17)(2,26,33,13,37,8,24,18)(3,27,34,14,38,9,25,19)(4,28,35,15,39,10,21,20)(5,29,31,11,40,6,22,16)(41,66,77,58,46,61,72,53)(42,67,78,59,47,62,73,54)(43,68,79,60,48,63,74,55)(44,69,80,51,49,64,75,56)(45,70,71,52,50,65,76,57), (1,46)(2,42)(3,48)(4,44)(5,50)(6,57)(7,53)(8,59)(9,55)(10,51)(11,70)(12,66)(13,62)(14,68)(15,64)(16,65)(17,61)(18,67)(19,63)(20,69)(21,80)(22,76)(23,72)(24,78)(25,74)(26,54)(27,60)(28,56)(29,52)(30,58)(31,71)(32,77)(33,73)(34,79)(35,75)(36,41)(37,47)(38,43)(39,49)(40,45), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,40)(2,39)(3,38)(4,37)(5,36)(6,30)(7,29)(8,28)(9,27)(10,26)(11,17)(12,16)(13,20)(14,19)(15,18)(21,33)(22,32)(23,31)(24,35)(25,34)(41,76,46,71)(42,75,47,80)(43,74,48,79)(44,73,49,78)(45,72,50,77)(51,67,56,62)(52,66,57,61)(53,65,58,70)(54,64,59,69)(55,63,60,68)>;

G:=Group( (1,30,32,12,36,7,23,17)(2,26,33,13,37,8,24,18)(3,27,34,14,38,9,25,19)(4,28,35,15,39,10,21,20)(5,29,31,11,40,6,22,16)(41,66,77,58,46,61,72,53)(42,67,78,59,47,62,73,54)(43,68,79,60,48,63,74,55)(44,69,80,51,49,64,75,56)(45,70,71,52,50,65,76,57), (1,46)(2,42)(3,48)(4,44)(5,50)(6,57)(7,53)(8,59)(9,55)(10,51)(11,70)(12,66)(13,62)(14,68)(15,64)(16,65)(17,61)(18,67)(19,63)(20,69)(21,80)(22,76)(23,72)(24,78)(25,74)(26,54)(27,60)(28,56)(29,52)(30,58)(31,71)(32,77)(33,73)(34,79)(35,75)(36,41)(37,47)(38,43)(39,49)(40,45), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,40)(2,39)(3,38)(4,37)(5,36)(6,30)(7,29)(8,28)(9,27)(10,26)(11,17)(12,16)(13,20)(14,19)(15,18)(21,33)(22,32)(23,31)(24,35)(25,34)(41,76,46,71)(42,75,47,80)(43,74,48,79)(44,73,49,78)(45,72,50,77)(51,67,56,62)(52,66,57,61)(53,65,58,70)(54,64,59,69)(55,63,60,68) );

G=PermutationGroup([[(1,30,32,12,36,7,23,17),(2,26,33,13,37,8,24,18),(3,27,34,14,38,9,25,19),(4,28,35,15,39,10,21,20),(5,29,31,11,40,6,22,16),(41,66,77,58,46,61,72,53),(42,67,78,59,47,62,73,54),(43,68,79,60,48,63,74,55),(44,69,80,51,49,64,75,56),(45,70,71,52,50,65,76,57)], [(1,46),(2,42),(3,48),(4,44),(5,50),(6,57),(7,53),(8,59),(9,55),(10,51),(11,70),(12,66),(13,62),(14,68),(15,64),(16,65),(17,61),(18,67),(19,63),(20,69),(21,80),(22,76),(23,72),(24,78),(25,74),(26,54),(27,60),(28,56),(29,52),(30,58),(31,71),(32,77),(33,73),(34,79),(35,75),(36,41),(37,47),(38,43),(39,49),(40,45)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,40),(2,39),(3,38),(4,37),(5,36),(6,30),(7,29),(8,28),(9,27),(10,26),(11,17),(12,16),(13,20),(14,19),(15,18),(21,33),(22,32),(23,31),(24,35),(25,34),(41,76,46,71),(42,75,47,80),(43,74,48,79),(44,73,49,78),(45,72,50,77),(51,67,56,62),(52,66,57,61),(53,65,58,70),(54,64,59,69),(55,63,60,68)]])

56 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G4H4I5A5B8A8B8C8D8E8F8G8H8I8J8K8L8M8N10A10B10C10D10E10F10G10H20A20B20C20D20E20F20G20H20I20J40A···40H
order12222444444444558888888888888810101010101010102020202020202020202040···40
size11244112441010101022222255551010202020202244888822224488884···4

56 irreducible representations

dim111111111222222222444
type+++++++++---++-
imageC1C2C2C2C2C2C4C4C4D4D5C4oD4D10Dic5Dic5Dic5D10C8oD8D4xD5D4:2D5D8:5Dic5
kernelD8:5Dic5C8xDic5C40.6C4D4:2Dic5D4.Dic5C5xC4oD8C5xD8C5xSD16C5xQ16C5:2C8C4oD8C2xC10C2xC8D8SD16Q16C4oD4C5C4C22C1
# reps111221242222224248228

Matrix representation of D8:5Dic5 in GL4(F41) generated by

142600
0300
0010
0001
,
31500
353800
00400
00040
,
404000
0100
0001
00406
,
9500
04000
0010
00640
G:=sub<GL(4,GF(41))| [14,0,0,0,26,3,0,0,0,0,1,0,0,0,0,1],[3,35,0,0,15,38,0,0,0,0,40,0,0,0,0,40],[40,0,0,0,40,1,0,0,0,0,0,40,0,0,1,6],[9,0,0,0,5,40,0,0,0,0,1,6,0,0,0,40] >;

D8:5Dic5 in GAP, Magma, Sage, TeX

D_8\rtimes_5{\rm Dic}_5
% in TeX

G:=Group("D8:5Dic5");
// GroupNames label

G:=SmallGroup(320,823);
// by ID

G=gap.SmallGroup(320,823);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,219,136,851,438,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^10=1,d^2=c^5,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^4*b,d*b*d^-1=a^2*b,d*c*d^-1=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<