Extensions 1→N→G→Q→1 with N=D20⋊C4 and Q=C2

Direct product G=N×Q with N=D20⋊C4 and Q=C2
dρLabelID
C2×D20⋊C480C2xD20:C4320,1104

Semidirect products G=N:Q with N=D20⋊C4 and Q=C2
extensionφ:Q→Out NdρLabelID
D20⋊C41C2 = D8×F5φ: C2/C1C2 ⊆ Out D20⋊C4408+D20:C4:1C2320,1068
D20⋊C42C2 = D40⋊C4φ: C2/C1C2 ⊆ Out D20⋊C4408+D20:C4:2C2320,1069
D20⋊C43C2 = (D4×C10)⋊C4φ: C2/C1C2 ⊆ Out D20⋊C4408+D20:C4:3C2320,1105
D20⋊C44C2 = C4○D4⋊F5φ: C2/C1C2 ⊆ Out D20⋊C4408D20:C4:4C2320,1131
D20⋊C45C2 = C4○D20⋊C4φ: trivial image808D20:C4:5C2320,1132

Non-split extensions G=N.Q with N=D20⋊C4 and Q=C2
extensionφ:Q→Out NdρLabelID
D20⋊C4.1C2 = SD16×F5φ: C2/C1C2 ⊆ Out D20⋊C4408D20:C4.1C2320,1072
D20⋊C4.2C2 = SD16⋊F5φ: C2/C1C2 ⊆ Out D20⋊C4408D20:C4.2C2320,1073

׿
×
𝔽