Copied to
clipboard

G = D8×F5order 320 = 26·5

Direct product of D8 and F5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D8×F5, D405C4, C5⋊(C4×D8), C84(C2×F5), C402(C2×C4), D4⋊D51C4, (C5×D8)⋊5C4, D41(C2×F5), (C8×F5)⋊1C2, (D4×F5)⋊1C2, D201(C2×C4), D5.D82C2, (D5×D8).5C2, D5.2(C2×D8), C2.15(D4×F5), D20⋊C41C2, C10.14(C4×D4), (C2×F5).10D4, C4⋊F5.1C22, C4.1(C22×F5), D5.2(C4○D8), D10.63(C2×D4), C20.1(C22×C4), D5⋊C8.9C22, (D4×D5).5C22, (C4×F5).9C22, (C4×D5).23C23, (C8×D5).21C22, Dic5.1(C4○D4), (C5×D4)⋊1(C2×C4), C52C811(C2×C4), SmallGroup(320,1068)

Series: Derived Chief Lower central Upper central

C1C20 — D8×F5
C1C5C10D10C4×D5C4×F5D4×F5 — D8×F5
C5C10C20 — D8×F5
C1C2C4D8

Generators and relations for D8×F5
 G = < a,b,c,d | a8=b2=c5=d4=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c3 >

Subgroups: 674 in 134 conjugacy classes, 44 normal (26 characteristic)
C1, C2, C2, C4, C4, C22, C5, C8, C8, C2×C4, D4, D4, C23, D5, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, D8, D8, C22×C4, C2×D4, Dic5, C20, F5, F5, D10, D10, C2×C10, C4×C8, D4⋊C4, C2.D8, C4×D4, C2×D8, C52C8, C40, C5⋊C8, C4×D5, D20, C5⋊D4, C5×D4, C2×F5, C2×F5, C22×D5, C4×D8, C8×D5, D40, D4⋊D5, C5×D8, D5⋊C8, C4×F5, C4⋊F5, C22⋊F5, D4×D5, C22×F5, C8×F5, D5.D8, D20⋊C4, D5×D8, D4×F5, D8×F5
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D8, C22×C4, C2×D4, C4○D4, F5, C4×D4, C2×D8, C4○D8, C2×F5, C4×D8, C22×F5, D4×F5, D8×F5

Smallest permutation representation of D8×F5
On 40 points
Generators in S40
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)
(1 8)(2 7)(3 6)(4 5)(9 14)(10 13)(11 12)(15 16)(17 22)(18 21)(19 20)(23 24)(25 30)(26 29)(27 28)(31 32)(33 36)(34 35)(37 40)(38 39)
(1 24 32 12 35)(2 17 25 13 36)(3 18 26 14 37)(4 19 27 15 38)(5 20 28 16 39)(6 21 29 9 40)(7 22 30 10 33)(8 23 31 11 34)
(9 21 29 40)(10 22 30 33)(11 23 31 34)(12 24 32 35)(13 17 25 36)(14 18 26 37)(15 19 27 38)(16 20 28 39)

G:=sub<Sym(40)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (1,8)(2,7)(3,6)(4,5)(9,14)(10,13)(11,12)(15,16)(17,22)(18,21)(19,20)(23,24)(25,30)(26,29)(27,28)(31,32)(33,36)(34,35)(37,40)(38,39), (1,24,32,12,35)(2,17,25,13,36)(3,18,26,14,37)(4,19,27,15,38)(5,20,28,16,39)(6,21,29,9,40)(7,22,30,10,33)(8,23,31,11,34), (9,21,29,40)(10,22,30,33)(11,23,31,34)(12,24,32,35)(13,17,25,36)(14,18,26,37)(15,19,27,38)(16,20,28,39)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (1,8)(2,7)(3,6)(4,5)(9,14)(10,13)(11,12)(15,16)(17,22)(18,21)(19,20)(23,24)(25,30)(26,29)(27,28)(31,32)(33,36)(34,35)(37,40)(38,39), (1,24,32,12,35)(2,17,25,13,36)(3,18,26,14,37)(4,19,27,15,38)(5,20,28,16,39)(6,21,29,9,40)(7,22,30,10,33)(8,23,31,11,34), (9,21,29,40)(10,22,30,33)(11,23,31,34)(12,24,32,35)(13,17,25,36)(14,18,26,37)(15,19,27,38)(16,20,28,39) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40)], [(1,8),(2,7),(3,6),(4,5),(9,14),(10,13),(11,12),(15,16),(17,22),(18,21),(19,20),(23,24),(25,30),(26,29),(27,28),(31,32),(33,36),(34,35),(37,40),(38,39)], [(1,24,32,12,35),(2,17,25,13,36),(3,18,26,14,37),(4,19,27,15,38),(5,20,28,16,39),(6,21,29,9,40),(7,22,30,10,33),(8,23,31,11,34)], [(9,21,29,40),(10,22,30,33),(11,23,31,34),(12,24,32,35),(13,17,25,36),(14,18,26,37),(15,19,27,38),(16,20,28,39)]])

35 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L 5 8A8B8C···8H10A10B10C 20 40A40B
order122222224444444444445888···8101010204040
size1144552020255551010102020202042210···1041616888

35 irreducible representations

dim111111111222244488
type+++++++++++++
imageC1C2C2C2C2C2C4C4C4D4C4○D4D8C4○D8F5C2×F5C2×F5D4×F5D8×F5
kernelD8×F5C8×F5D5.D8D20⋊C4D5×D8D4×F5D40D4⋊D5C5×D8C2×F5Dic5F5D5D8C8D4C2C1
# reps111212242224411212

Matrix representation of D8×F5 in GL6(𝔽41)

0240000
29240000
001000
000100
000010
000001
,
0240000
1200000
0040000
0004000
0000400
0000040
,
100000
010000
0000040
0010040
0001040
0000140
,
900000
090000
000010
001000
000001
000100

G:=sub<GL(6,GF(41))| [0,29,0,0,0,0,24,24,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,12,0,0,0,0,24,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,40,40,40],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0] >;

D8×F5 in GAP, Magma, Sage, TeX

D_8\times F_5
% in TeX

G:=Group("D8xF5");
// GroupNames label

G:=SmallGroup(320,1068);
// by ID

G=gap.SmallGroup(320,1068);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,219,851,438,102,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^5=d^4=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽