Extensions 1→N→G→Q→1 with N=C5 and Q=C2×M5(2)

Direct product G=N×Q with N=C5 and Q=C2×M5(2)
dρLabelID
C10×M5(2)160C10xM5(2)320,1004

Semidirect products G=N:Q with N=C5 and Q=C2×M5(2)
extensionφ:Q→Aut NdρLabelID
C51(C2×M5(2)) = C2×C8.F5φ: C2×M5(2)/C2×C8C4 ⊆ Aut C5160C5:1(C2xM5(2))320,1052
C52(C2×M5(2)) = D5⋊M5(2)φ: C2×M5(2)/C2×C8C4 ⊆ Aut C5804C5:2(C2xM5(2))320,1053
C53(C2×M5(2)) = C2×C20.C8φ: C2×M5(2)/C22×C4C4 ⊆ Aut C5160C5:3(C2xM5(2))320,1081
C54(C2×M5(2)) = C2×C80⋊C2φ: C2×M5(2)/C2×C16C2 ⊆ Aut C5160C5:4(C2xM5(2))320,527
C55(C2×M5(2)) = D5×M5(2)φ: C2×M5(2)/M5(2)C2 ⊆ Aut C5804C5:5(C2xM5(2))320,533
C56(C2×M5(2)) = C2×C20.4C8φ: C2×M5(2)/C22×C8C2 ⊆ Aut C5160C5:6(C2xM5(2))320,724


׿
×
𝔽