direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D5×M5(2), C16⋊6D10, C80⋊7C22, C40.66C23, (D5×C16)⋊7C2, (C8×D5).9C4, C80⋊C2⋊5C2, (C4×D5).1C8, C8.35(C4×D5), C4.15(C8×D5), C5⋊5(C2×M5(2)), C20.36(C2×C8), C40.79(C2×C4), C22.7(C8×D5), D10.11(C2×C8), (C2×C8).272D10, (C5×M5(2))⋊5C2, (C2×Dic5).7C8, C20.4C8⋊13C2, (C22×D5).5C8, C8.60(C22×D5), C5⋊2C16⋊11C22, C10.39(C22×C8), Dic5.13(C2×C8), (C8×D5).47C22, (C2×C40).230C22, C20.190(C22×C4), C2.16(D5×C2×C8), (C2×C4×D5).12C4, (D5×C2×C8).28C2, C4.105(C2×C4×D5), (C2×C5⋊2C8).11C4, (C2×C10).20(C2×C8), C5⋊2C8.44(C2×C4), (C4×D5).82(C2×C4), (C2×C4).148(C4×D5), (C2×C20).245(C2×C4), SmallGroup(320,533)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D5×M5(2)
G = < a,b,c,d | a5=b2=c16=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c9 >
Subgroups: 238 in 90 conjugacy classes, 53 normal (41 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, C23, D5, D5, C10, C10, C16, C16, C2×C8, C2×C8, C22×C4, Dic5, C20, D10, D10, C2×C10, C2×C16, M5(2), M5(2), C22×C8, C5⋊2C8, C40, C4×D5, C2×Dic5, C2×C20, C22×D5, C2×M5(2), C5⋊2C16, C80, C8×D5, C2×C5⋊2C8, C2×C40, C2×C4×D5, D5×C16, C80⋊C2, C20.4C8, C5×M5(2), D5×C2×C8, D5×M5(2)
Quotients: C1, C2, C4, C22, C8, C2×C4, C23, D5, C2×C8, C22×C4, D10, M5(2), C22×C8, C4×D5, C22×D5, C2×M5(2), C8×D5, C2×C4×D5, D5×C2×C8, D5×M5(2)
(1 20 64 74 37)(2 21 49 75 38)(3 22 50 76 39)(4 23 51 77 40)(5 24 52 78 41)(6 25 53 79 42)(7 26 54 80 43)(8 27 55 65 44)(9 28 56 66 45)(10 29 57 67 46)(11 30 58 68 47)(12 31 59 69 48)(13 32 60 70 33)(14 17 61 71 34)(15 18 62 72 35)(16 19 63 73 36)
(1 45)(2 46)(3 47)(4 48)(5 33)(6 34)(7 35)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 44)(17 79)(18 80)(19 65)(20 66)(21 67)(22 68)(23 69)(24 70)(25 71)(26 72)(27 73)(28 74)(29 75)(30 76)(31 77)(32 78)(49 57)(50 58)(51 59)(52 60)(53 61)(54 62)(55 63)(56 64)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(2 10)(4 12)(6 14)(8 16)(17 25)(19 27)(21 29)(23 31)(34 42)(36 44)(38 46)(40 48)(49 57)(51 59)(53 61)(55 63)(65 73)(67 75)(69 77)(71 79)
G:=sub<Sym(80)| (1,20,64,74,37)(2,21,49,75,38)(3,22,50,76,39)(4,23,51,77,40)(5,24,52,78,41)(6,25,53,79,42)(7,26,54,80,43)(8,27,55,65,44)(9,28,56,66,45)(10,29,57,67,46)(11,30,58,68,47)(12,31,59,69,48)(13,32,60,70,33)(14,17,61,71,34)(15,18,62,72,35)(16,19,63,73,36), (1,45)(2,46)(3,47)(4,48)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,79)(18,80)(19,65)(20,66)(21,67)(22,68)(23,69)(24,70)(25,71)(26,72)(27,73)(28,74)(29,75)(30,76)(31,77)(32,78)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,10)(4,12)(6,14)(8,16)(17,25)(19,27)(21,29)(23,31)(34,42)(36,44)(38,46)(40,48)(49,57)(51,59)(53,61)(55,63)(65,73)(67,75)(69,77)(71,79)>;
G:=Group( (1,20,64,74,37)(2,21,49,75,38)(3,22,50,76,39)(4,23,51,77,40)(5,24,52,78,41)(6,25,53,79,42)(7,26,54,80,43)(8,27,55,65,44)(9,28,56,66,45)(10,29,57,67,46)(11,30,58,68,47)(12,31,59,69,48)(13,32,60,70,33)(14,17,61,71,34)(15,18,62,72,35)(16,19,63,73,36), (1,45)(2,46)(3,47)(4,48)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,79)(18,80)(19,65)(20,66)(21,67)(22,68)(23,69)(24,70)(25,71)(26,72)(27,73)(28,74)(29,75)(30,76)(31,77)(32,78)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,10)(4,12)(6,14)(8,16)(17,25)(19,27)(21,29)(23,31)(34,42)(36,44)(38,46)(40,48)(49,57)(51,59)(53,61)(55,63)(65,73)(67,75)(69,77)(71,79) );
G=PermutationGroup([[(1,20,64,74,37),(2,21,49,75,38),(3,22,50,76,39),(4,23,51,77,40),(5,24,52,78,41),(6,25,53,79,42),(7,26,54,80,43),(8,27,55,65,44),(9,28,56,66,45),(10,29,57,67,46),(11,30,58,68,47),(12,31,59,69,48),(13,32,60,70,33),(14,17,61,71,34),(15,18,62,72,35),(16,19,63,73,36)], [(1,45),(2,46),(3,47),(4,48),(5,33),(6,34),(7,35),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,44),(17,79),(18,80),(19,65),(20,66),(21,67),(22,68),(23,69),(24,70),(25,71),(26,72),(27,73),(28,74),(29,75),(30,76),(31,77),(32,78),(49,57),(50,58),(51,59),(52,60),(53,61),(54,62),(55,63),(56,64)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(2,10),(4,12),(6,14),(8,16),(17,25),(19,27),(21,29),(23,31),(34,42),(36,44),(38,46),(40,48),(49,57),(51,59),(53,61),(55,63),(65,73),(67,75),(69,77),(71,79)]])
80 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 5A | 5B | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | 10A | 10B | 10C | 10D | 16A | ··· | 16H | 16I | ··· | 16P | 20A | 20B | 20C | 20D | 20E | 20F | 40A | ··· | 40H | 40I | 40J | 40K | 40L | 80A | ··· | 80P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 16 | ··· | 16 | 16 | ··· | 16 | 20 | 20 | 20 | 20 | 20 | 20 | 40 | ··· | 40 | 40 | 40 | 40 | 40 | 80 | ··· | 80 |
size | 1 | 1 | 2 | 5 | 5 | 10 | 1 | 1 | 2 | 5 | 5 | 10 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 5 | 5 | 5 | 5 | 10 | 10 | 2 | 2 | 4 | 4 | 2 | ··· | 2 | 10 | ··· | 10 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
80 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | ||||||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C8 | C8 | C8 | D5 | D10 | D10 | M5(2) | C4×D5 | C4×D5 | C8×D5 | C8×D5 | D5×M5(2) |
kernel | D5×M5(2) | D5×C16 | C80⋊C2 | C20.4C8 | C5×M5(2) | D5×C2×C8 | C8×D5 | C2×C5⋊2C8 | C2×C4×D5 | C4×D5 | C2×Dic5 | C22×D5 | M5(2) | C16 | C2×C8 | D5 | C8 | C2×C4 | C4 | C22 | C1 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 4 | 2 | 2 | 8 | 4 | 4 | 2 | 4 | 2 | 8 | 4 | 4 | 8 | 8 | 8 |
Matrix representation of D5×M5(2) ►in GL4(𝔽241) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 240 | 189 |
240 | 0 | 0 | 0 |
0 | 240 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
1 | 54 | 0 | 0 |
111 | 240 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
116 | 240 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(241))| [1,0,0,0,0,1,0,0,0,0,0,240,0,0,1,189],[240,0,0,0,0,240,0,0,0,0,0,1,0,0,1,0],[1,111,0,0,54,240,0,0,0,0,1,0,0,0,0,1],[1,116,0,0,0,240,0,0,0,0,1,0,0,0,0,1] >;
D5×M5(2) in GAP, Magma, Sage, TeX
D_5\times M_5(2)
% in TeX
G:=Group("D5xM5(2)");
// GroupNames label
G:=SmallGroup(320,533);
// by ID
G=gap.SmallGroup(320,533);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,387,58,80,102,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^2=c^16=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^9>;
// generators/relations