Copied to
clipboard

G = C3×C37⋊C3order 333 = 32·37

Direct product of C3 and C37⋊C3

direct product, metacyclic, supersoluble, monomial, A-group, 3-hyperelementary

Aliases: C3×C37⋊C3, C111⋊C3, C37⋊C32, SmallGroup(333,4)

Series: Derived Chief Lower central Upper central

C1C37 — C3×C37⋊C3
C1C37C37⋊C3 — C3×C37⋊C3
C37 — C3×C37⋊C3
C1C3

Generators and relations for C3×C37⋊C3
 G = < a,b,c | a3=b37=c3=1, ab=ba, ac=ca, cbc-1=b10 >

37C3
37C3
37C3
37C32

Smallest permutation representation of C3×C37⋊C3
On 111 points
Generators in S111
(1 75 38)(2 76 39)(3 77 40)(4 78 41)(5 79 42)(6 80 43)(7 81 44)(8 82 45)(9 83 46)(10 84 47)(11 85 48)(12 86 49)(13 87 50)(14 88 51)(15 89 52)(16 90 53)(17 91 54)(18 92 55)(19 93 56)(20 94 57)(21 95 58)(22 96 59)(23 97 60)(24 98 61)(25 99 62)(26 100 63)(27 101 64)(28 102 65)(29 103 66)(30 104 67)(31 105 68)(32 106 69)(33 107 70)(34 108 71)(35 109 72)(36 110 73)(37 111 74)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37)(38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74)(75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111)
(2 27 11)(3 16 21)(4 5 31)(6 20 14)(7 9 24)(8 35 34)(10 13 17)(12 28 37)(15 32 30)(18 36 23)(19 25 33)(22 29 26)(39 64 48)(40 53 58)(41 42 68)(43 57 51)(44 46 61)(45 72 71)(47 50 54)(49 65 74)(52 69 67)(55 73 60)(56 62 70)(59 66 63)(76 101 85)(77 90 95)(78 79 105)(80 94 88)(81 83 98)(82 109 108)(84 87 91)(86 102 111)(89 106 104)(92 110 97)(93 99 107)(96 103 100)

G:=sub<Sym(111)| (1,75,38)(2,76,39)(3,77,40)(4,78,41)(5,79,42)(6,80,43)(7,81,44)(8,82,45)(9,83,46)(10,84,47)(11,85,48)(12,86,49)(13,87,50)(14,88,51)(15,89,52)(16,90,53)(17,91,54)(18,92,55)(19,93,56)(20,94,57)(21,95,58)(22,96,59)(23,97,60)(24,98,61)(25,99,62)(26,100,63)(27,101,64)(28,102,65)(29,103,66)(30,104,67)(31,105,68)(32,106,69)(33,107,70)(34,108,71)(35,109,72)(36,110,73)(37,111,74), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74)(75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111), (2,27,11)(3,16,21)(4,5,31)(6,20,14)(7,9,24)(8,35,34)(10,13,17)(12,28,37)(15,32,30)(18,36,23)(19,25,33)(22,29,26)(39,64,48)(40,53,58)(41,42,68)(43,57,51)(44,46,61)(45,72,71)(47,50,54)(49,65,74)(52,69,67)(55,73,60)(56,62,70)(59,66,63)(76,101,85)(77,90,95)(78,79,105)(80,94,88)(81,83,98)(82,109,108)(84,87,91)(86,102,111)(89,106,104)(92,110,97)(93,99,107)(96,103,100)>;

G:=Group( (1,75,38)(2,76,39)(3,77,40)(4,78,41)(5,79,42)(6,80,43)(7,81,44)(8,82,45)(9,83,46)(10,84,47)(11,85,48)(12,86,49)(13,87,50)(14,88,51)(15,89,52)(16,90,53)(17,91,54)(18,92,55)(19,93,56)(20,94,57)(21,95,58)(22,96,59)(23,97,60)(24,98,61)(25,99,62)(26,100,63)(27,101,64)(28,102,65)(29,103,66)(30,104,67)(31,105,68)(32,106,69)(33,107,70)(34,108,71)(35,109,72)(36,110,73)(37,111,74), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74)(75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111), (2,27,11)(3,16,21)(4,5,31)(6,20,14)(7,9,24)(8,35,34)(10,13,17)(12,28,37)(15,32,30)(18,36,23)(19,25,33)(22,29,26)(39,64,48)(40,53,58)(41,42,68)(43,57,51)(44,46,61)(45,72,71)(47,50,54)(49,65,74)(52,69,67)(55,73,60)(56,62,70)(59,66,63)(76,101,85)(77,90,95)(78,79,105)(80,94,88)(81,83,98)(82,109,108)(84,87,91)(86,102,111)(89,106,104)(92,110,97)(93,99,107)(96,103,100) );

G=PermutationGroup([[(1,75,38),(2,76,39),(3,77,40),(4,78,41),(5,79,42),(6,80,43),(7,81,44),(8,82,45),(9,83,46),(10,84,47),(11,85,48),(12,86,49),(13,87,50),(14,88,51),(15,89,52),(16,90,53),(17,91,54),(18,92,55),(19,93,56),(20,94,57),(21,95,58),(22,96,59),(23,97,60),(24,98,61),(25,99,62),(26,100,63),(27,101,64),(28,102,65),(29,103,66),(30,104,67),(31,105,68),(32,106,69),(33,107,70),(34,108,71),(35,109,72),(36,110,73),(37,111,74)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37),(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74),(75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111)], [(2,27,11),(3,16,21),(4,5,31),(6,20,14),(7,9,24),(8,35,34),(10,13,17),(12,28,37),(15,32,30),(18,36,23),(19,25,33),(22,29,26),(39,64,48),(40,53,58),(41,42,68),(43,57,51),(44,46,61),(45,72,71),(47,50,54),(49,65,74),(52,69,67),(55,73,60),(56,62,70),(59,66,63),(76,101,85),(77,90,95),(78,79,105),(80,94,88),(81,83,98),(82,109,108),(84,87,91),(86,102,111),(89,106,104),(92,110,97),(93,99,107),(96,103,100)]])

45 conjugacy classes

class 1 3A3B3C···3H37A···37L111A···111X
order1333···337···37111···111
size11137···373···33···3

45 irreducible representations

dim11133
type+
imageC1C3C3C37⋊C3C3×C37⋊C3
kernelC3×C37⋊C3C37⋊C3C111C3C1
# reps1621224

Matrix representation of C3×C37⋊C3 in GL3(𝔽223) generated by

3900
0390
0039
,
42147217
108
0172
,
493220
1822373
6464151
G:=sub<GL(3,GF(223))| [39,0,0,0,39,0,0,0,39],[42,1,0,147,0,1,217,8,72],[49,182,64,32,23,64,20,73,151] >;

C3×C37⋊C3 in GAP, Magma, Sage, TeX

C_3\times C_{37}\rtimes C_3
% in TeX

G:=Group("C3xC37:C3");
// GroupNames label

G:=SmallGroup(333,4);
// by ID

G=gap.SmallGroup(333,4);
# by ID

G:=PCGroup([3,-3,-3,-37,2108]);
// Polycyclic

G:=Group<a,b,c|a^3=b^37=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^10>;
// generators/relations

Export

Subgroup lattice of C3×C37⋊C3 in TeX

׿
×
𝔽