Extensions 1→N→G→Q→1 with N=C2xC12 and Q=D7

Direct product G=NxQ with N=C2xC12 and Q=D7
dρLabelID
D7xC2xC12168D7xC2xC12336,175

Semidirect products G=N:Q with N=C2xC12 and Q=D7
extensionφ:Q→Aut NdρLabelID
(C2xC12):1D7 = C3xD14:C4φ: D7/C7C2 ⊆ Aut C2xC12168(C2xC12):1D7336,68
(C2xC12):2D7 = C2.D84φ: D7/C7C2 ⊆ Aut C2xC12168(C2xC12):2D7336,100
(C2xC12):3D7 = C2xD84φ: D7/C7C2 ⊆ Aut C2xC12168(C2xC12):3D7336,196
(C2xC12):4D7 = D84:11C2φ: D7/C7C2 ⊆ Aut C2xC121682(C2xC12):4D7336,197
(C2xC12):5D7 = C2xC4xD21φ: D7/C7C2 ⊆ Aut C2xC12168(C2xC12):5D7336,195
(C2xC12):6D7 = C6xD28φ: D7/C7C2 ⊆ Aut C2xC12168(C2xC12):6D7336,176
(C2xC12):7D7 = C3xC4oD28φ: D7/C7C2 ⊆ Aut C2xC121682(C2xC12):7D7336,177

Non-split extensions G=N.Q with N=C2xC12 and Q=D7
extensionφ:Q→Aut NdρLabelID
(C2xC12).1D7 = C3xDic7:C4φ: D7/C7C2 ⊆ Aut C2xC12336(C2xC12).1D7336,66
(C2xC12).2D7 = C42.4Q8φ: D7/C7C2 ⊆ Aut C2xC12336(C2xC12).2D7336,98
(C2xC12).3D7 = C84:C4φ: D7/C7C2 ⊆ Aut C2xC12336(C2xC12).3D7336,99
(C2xC12).4D7 = C2xDic42φ: D7/C7C2 ⊆ Aut C2xC12336(C2xC12).4D7336,194
(C2xC12).5D7 = C84.C4φ: D7/C7C2 ⊆ Aut C2xC121682(C2xC12).5D7336,96
(C2xC12).6D7 = C2xC21:C8φ: D7/C7C2 ⊆ Aut C2xC12336(C2xC12).6D7336,95
(C2xC12).7D7 = C4xDic21φ: D7/C7C2 ⊆ Aut C2xC12336(C2xC12).7D7336,97
(C2xC12).8D7 = C3xC4.Dic7φ: D7/C7C2 ⊆ Aut C2xC121682(C2xC12).8D7336,64
(C2xC12).9D7 = C3xC4:Dic7φ: D7/C7C2 ⊆ Aut C2xC12336(C2xC12).9D7336,67
(C2xC12).10D7 = C6xDic14φ: D7/C7C2 ⊆ Aut C2xC12336(C2xC12).10D7336,174
(C2xC12).11D7 = C6xC7:C8central extension (φ=1)336(C2xC12).11D7336,63
(C2xC12).12D7 = C12xDic7central extension (φ=1)336(C2xC12).12D7336,65

׿
x
:
Z
F
o
wr
Q
<